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Fig. 1. LiveSplats takes multi-view video streams of sports events as input and reconstructs the dynamic 3D scene to allow viewers to watch from any novel

view with interactive frame rates.

Human-centered live events have always played a pivotal role in shaping

culture and fostering social connections. Traditional 2D live transmissions

fail to replicate the immersive quality of physical attendance. Addressing

this gap, this paper proposes LiveSplats, a framework towards real-time,

photo-realistic 3D reconstructions of live events using high-performance

3D Gaussian Splatting.

Our solution capitalizes on strong geometric priors to optimize through

distributed processing and load balancing, enabling interactive, freely ex-

plorable 3D experiences. By dividing scene reconstruction into actor-centric

and environment-speci�c tasks, we employ hierarchical coarse-to-�ne op-

timization to rapidly and accurately reconstruct human actors based on
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pose data, re�ning their geometry and appearance with photometric loss.

For static environments, we focus on view-dependent appearance changes,

streamlining rendering e�ciency and maximizing GPU performance. To

facilitate evaluation, we introduce (and distribute) a synthetic benchmark

dataset of basketball games, o�ering high visual �delity as ground truth. In

both our synthetic benchmark and publicly available benchmarks, LiveSplats

consistently outperforms existing approaches. The dataset is available at

https://humansensinglab.github.io/basket-multiview.
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1 Introduction

"Panem et circenses" coined by Roman poet Juvenal to critize the

self-serving nature of Romans who, deprived of political in�uence,

are placated soley by "bread and circuses" provided by the govern-

ment. Although technology has advanced signi�cantly, we remain

the same humans, governed by similar systems. Entertainment con-

tinues to be at the heart of societal engagement, illustrating that

some aspects of human nature endure across millennia.

To allow for widespread participation, live transmissions of such

sports events are ubiquitously available for remote, visual consump-

tion in a 2D format. Unfortunately, this does not allow viewers to im-

merse themselves in the same way that personal attendance would:

at best, television services may allow viewers to cycle through cam-

eras at will to enable a basic level of engagement.

In 2001, Takeo Kanade and collaborators [University 2001] devel-

oped the "EyeVision" technology for use during Super Bowl 2001.

It involved an array of cameras mounted at the Raymond James

Stadium, which provided a dynamic, panoramic view of the play.

This system synthesized the inputs from multiple cameras into a

single, �owing image, allowing viewers to see the action from virtu-

ally any angle. This innovation signi�cantly enhanced the viewer’s

experience by o�ering detailed, 360-degree views of live action,

which traditional single-point-of-view cameras could not capture.

However, EyeVision did not allow real-time interaction, needed a

lot of computing and was extremely costly to set up.

Building on this, Intel’s TrueView (formerly freeD) technology

uses an array of high-resolution cameras around stadiums to create

immersive 360-degree replays, allowing viewers to experience key

moments from various angles. Spiideo’s Multi-Angle Autocasting

utilizes AI-powered cameras to capture multiple perspectives of

sports events automatically, enabling seamless switching between

angles without manual intervention.

Anticipating the next frontier of visual content consumption,

this paper lays the foundation to provide signi�cant leaps forward

for the remote experience of live sports events: Building on recent

advances for high-performance radiance �eld representations, we

describe a wholistic solution toward providing a freely explorable,

photo-realistic 3D format for such events. Our approach, LiveSplats,

is based on fast-to-train radiance �elds from 3D Gaussian Splatting

[Kerbl et al. 2023] (3DGS) . By focusing on human-centered content,

we can exploit strong geometric priors to cut reconstruction time,

facilitate distributed and parallel processing, as well as load balanc-

ing to produce high-quality 3D reconstructions for live content at

interactive rates. Speci�cally, we separate the job of reconstructing

the full scene at a given timestamp into per-subject and environment

optimization tasks.

For each subject, we can seed their high-quality reconstruction

at each timestamp from easy-to-obtain pose information, and fur-

ther re�ne geometry and appearance from photometric loss via

di�erentiable 3DGS rendering. This work proposes a hierarchical

coarse-to-�ne approach that progressively resolves increasingly �ne

aspects of subjects’ pose and appearance, which forms a lightning-

fast solution that’s robust to noise, for reconstructing 3D humanoid

actors from multi-view images.

In addition to subjects in the event, a complete visual experi-

ence also requires reacting to changes in the environment. To limit

the problem space and allow highly e�ective run-time optimiza-

tion, this research focuses on geometrically static environments.

In other words, we assume that given an initial reconstruction of

an environment, only its appearance (i.e., view-dependent color)

may change as players perform actions this includes any changes in

global illumination, shadows, or re�ections as players move about

the scene. Enforcing this restriction allows for a highly streamlined

render pipeline design that alleviates several of the complex—and

time-consuming—aspects of 3DGS rendering. We show how this

simple assumption enables us to eschew all dynamic resource man-

agement challenges and use high-level (e.g., ideal load balancing)

and low-level (e.g., CUDA graphs) optimizations to maximize the

e�cacy of available hardware for training.

A signi�cant challenge in this research is the lack of available

data and standardization for live event capture with ground-truth

data. To enable an in-depth exploration of our target setting despite

this issue, we have designed a comprehensive, synthetic benchmark

dataset, focusing on sports activities with multiple actors. Designed

with professional 3D authoring and rendering tools, our dataset

provides high visual �delity and multimodal reference outputs for

optimization, as well as options for simulating real-live error sources

(e.g., in pose detection).

In summary, we provide the following contributions:

(1) A scalable system design toward real-time reconstruction of

sports events via distributed and parallel processing.

(2) A high-performance, coarse-to-�ne solution for reconstruct-

ing subjects in the event.

(3) A streamlined pipeline for appearance optimization with op-

timal load balancing.

(4) A comprehensive benchmark dataset with multiple actors in

human-centric settings.

2 Related works

Radiance Fields: Radiance �elds are pivotal in computer graphics

and vision, representing 3D scenes by modeling light distribution

within a volume. Kajiya’s rendering equation [Kajiya 1986] estab-

lished the foundation for simulating radiance transfer in scenes.

Precomputed Radiance Transfer (PRT) [Sloan et al. 2002] advanced

real-time rendering by precomputing light interactions for dynamic

lighting. Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] revo-

lutionized the �eld, using neural networks to synthesize high-�delity

novel views of complex scenes. Extensions like D-NeRF [Pumarola

et al. 2021] capture non-rigid deformations over time, while Time-

of-Flight Radiance Fields (TöRF) [Imaging Group 2021] incorporate

depth sensing for improved dynamic scene reconstruction.

Despite their dominance in scene reconstruction and novel view

synthesis, NeRF and its variants are computationally intensive, re-

quiring signi�cant optimization for each new scene. Recently, 3D

Gaussian Splatting (3DGS) [Kerbl et al. 2023] has emerged as a

more e�cient alternative, modeling radiance �elds with spatially

distributed Gaussian primitives.
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Fig. 2. System architecture of LiveSplats. We first segment multi-view images at time C , to obtain per-subject segmentation masks for each subject, and

pass the masked RGB images of each subject to the nodes. Each node will then optimize 3D Gaussians at C for that subject, using either dynamic or static

optimization logic. The optimized 3D Gaussians are collected from each node and aggregated into a single model, and then served for on-demand renderings

from arbitrary viewpoints to clients.

3DGS Methods: Spacetime Gaussians [Li et al. 2024a] and De-

formable 3D Gaussians [Yang et al. 2024] enhance 3DGS by in-

corporating temporal opacity, parametric motion, and annealing

mechanisms to model dynamic scenes while addressing pose esti-

mation inaccuracies. VideoRF [Wang et al. 2024a] and 4D Gaussian

Splatting [Wu et al. 2024] utilize space-time mappings and multi-

resolution Hex-Plane modules, respectively, to compress temporal

redundancies and capture motion and shape changes with deforma-

tion �elds. SurMo [Hu et al. 2024a] and Gaussian-Flow [Lin et al.

2024] model temporal dynamics using surface-based triplanes and

dual-domain deformation models, to capture complex motions and

deformations through frequency and polynomial �tting.

SWinGS [Shaw et al. 2024], Katsumata et al. [Katsumata et al. 2024],

and DynMF [Kratimenos et al. 2024] represent scene dynamics

with sliding windows, Fourier approximations, and basis trajecto-

ries, enabling e�cient and controllable motion synthesis. Street

Gaussians [Yan et al. 2024] and DualGS [Jiang et al. 2024] focus

on human-centric dynamic scenes, leveraging tracked poses, and

separate encodings for skeletal motion and surface appearance, with

real-time rendering supported by entropy and codec-based com-

pression.

3DGS for avatars: Several methods on driving human avatars

such as GaussianAvatar [Hu et al. 2024b], GoMAvatar [Wen et al.

2024] and SplattingAvatar [Shao et al. 2024] achieve high-quality

renderings frommonocular videos by combining explicit mesh repre-

sentations with Gaussian primitives. Concurrently, approaches such

as HumanGaussian [Liu et al. 2024], SimAvatar [Li et al. 2024b], and

PSHuman [Li et al. 2024c] focus on text-driven 3D human generation

and photorealistic reconstruction, leveraging di�usion models and

cross-scale techniques.+ 3 [Wang et al. 2024b] and SqueezeMe [Saito

et al. 2024] address the challenges of streaming volumetric videos on

mobile devices and optimizing Gaussian avatars for VR applications,

respectively.

NeRF streaming methods: StreamRF [Li et al. 2022] uses an

explicit grid-based model with incremental learning to reconstruct

streaming radiance �elds, updating each frame as a di�erence from

a base model, and optimizes only critical regions in each frame.

ReRF [Wang et al. 2023] represents dynamic scenes by modeling

inter-frame changes with a compact motion grid and residual fea-

ture grid, decoded by a lightweight MLP. NeRFPlayer [Song et al.

2023] enables e�cient streamable representation of dynamic scenes

by decomposing them into static, deform-able, and unseen areas,

each modeled by separate neural �elds, while employing a time-

dependent sliding window for feature streaming.

3DGS streaming methods: Dynamic-3DGS [Luiten et al. 2024]

(D-3DGS) models dynamic scenes with Gaussians with persistent ge-

ometry attributes that can orient freely, and enforcing local rigidity

for spatial consistency. 3DGStream [Sun et al. 2024] uses a neu-

ral transformation cache (NTC) for Gaussian transformation and

a re�nement stage for detail reconstruction. HiCoM [Gao et al.

2024] adopts hierarchical voxel-based motion modeling, perturba-

tion smoothing, and Gaussian merging for compact, streamable rep-

resentations. DASS employs Gaussian inheritance, motion-aware

alignment, and densi�cation via optimization errors for iterative

re�nement. QUEEN [Girish et al. 2024] encodes Gaussian attributes

with quantized residuals, sparsi�es position data, and disentangles

static and dynamic content using viewspace gradients.

3 Method

Our aim is to achieve real-time 3D reconstruction of sports-centered

events from multi-view streaming videos, to enable unrestricted

6-DOF exploration, providing a uniquely interactive experience for
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(remote) audiences. However, delivering such up-to-date visuals

poses a massive engineering challenge, requiring reconstructions

to happen thousands of times faster than traditional methods.

To tackle this challenge, we model the reconstruction process

using a two-level MapReduce [Dean and Ghemawat 2008] approach

and parallelize it across GPU-powered nodes . Nodes in a node-

pool process individual frames independently, while GPUs within a

node handle the reconstruction of dynamic elements-such as play-

ers, the court, or the ball-in parallel. This design allows interactive

frame rates, which improve linearly with increase in computational

resources.

3.1 System overview

Figure 2 provides an overview of LiveSplats. At time C , we map

the last # unprocessed frames (from C to C − # ) to each of the #

nodes. For each frame, we generate multi-viewmasks for all subjects

using o�-the-shelf models (SAM2 [Ravi et al. 2024]) and assign each

subject to a dedicated GPU for reconstruction.

Each node optimizes 3D Gaussians at frame C , with a subject

assigned to each GPU, employing either dynamic or static optimiza-

tion, which we detail in Sections 3.2 and 3.3, respectively. After

completing the 3D reconstruction for all subjects in the frame, the

optimized 3D Gaussians from each node are aggregated into a uni-

�ed model. We prioritize reconstruction in a manner that novel-view

synthesis at high-�delity is possible with just one optimization cycle,

thereby amortizing on-demand rendering from arbitrary viewpoints

for connected viewers.

A key design feature of LiveSplats that enables nearly unbounded

scalability is that scene reconstruction at frame C operates com-

pletely independently of other frames. This added �exibility in

distributed processing allows us to multiplex the reconstruction of

multiple adjacent frames, fully leveraging the available distributed

computing resources for real-time 3D reconstruction.

We elucidate the strength of this design through an example. The

total time )total for a frame to be generated by a node is comprised

of image transfer ()C ), reconstruction ()A ), 3DGS transfer back ()1 ),

and merging ()<). Since reconstruction is independent of previous

frames and the remaining stages can be handled asynchronously,

after an initial latency period of )C + )1 + )< , the per-frame time

with # nodes is )A
# , i.e., linear in the number of nodes. Theoretical

performance gains from raising # saturate when )A
# matches the

sampling rate of the input (e.g., 33ms per frame), at which point

real-time reconstruction is achieved. Recall that the time taken by

segmentation and 3-D pose estimation are intentionally omitted as

they run per frame, outside the critical path; This allows our timing

measurements to focus solely on reconstruction and enables a fair

comparison with prior work.

3.2 Dynamic optimization

Incremental frame optimization based on a robust prior is funda-

mental to several recent methods [Gao et al. 2024; Luiten et al. 2024;

Shaw et al. 2024; Sun et al. 2024] for dynamic scene reconstruction

using Gaussians. However, methods often lose structural detail over

time because relying on rigid/no priors accumulates errors, which

degrade �ne details during motion. To overcome this limitation,

we introduce a novel dynamic coarse-to-�ne optimization for hu-

mans, capable of moving 3D Gaussians over long distances while

maintaining �ne-grained details.

Modeling human body motion relies on high-quality priors, such

as 3D human skeletons, to guide the spatial transformations of the

3D Gaussians. We de�ne two key concepts: skeleton and skinning

weights. A skeleton is the kinematic tree structure of human body

where each node represents a joint, characterized by properties such

as global position x ∈ R3, global rotation quaternion q ∈ H in world

coordinates, and a pointer ? to its parent node. Skinning weights are

values assigned to mesh vertices, specifying the in�uence of each

joint on the vertex, allowing for realistic deformations as the joints

rotate.

LiveSplats processes multi-view RGB images per frame to produce

detailed, temporally consistent 3D Gaussian-based surface recon-

structions. Initialization involves optimizing vanilla 3DGS [Kerbl

et al. 2023] using multi-view images of a human in a T-pose (binding

pose), to generate a detailed 3DGS reconstruction. Following [Bhat-

nagar et al. 2020a,b], we �t an SMPL [Loper et al. 2015] model to

the converged Gaussian model of the T-pose, by minimizing the

chamfer loss between Gaussian centers and SMPL mesh vertices,

yielding the �nal mesh, skeleton, and linear blend skinning (LBS)

weights. Each Gaussian is assigned to its nearest mesh vertex and

inherits its skinning weights, enabling skeleton-driven manipula-

tion. While related work ([Hu et al. 2024b; Li et al. 2024c,b; Liu

et al. 2024; Shao et al. 2024; Wen et al. 2024]) learns this binding

for improved visual quality and smoother transitions, we stick to

principal, learning-free re�nement approaches. We remain open to

exploring such promising alternative Gaussian binding techniques

in future work.

For dynamic frames, OpenPose [Cao et al. 2019] is used to extract

multi-view 2D skeletons for frame C , which are then triangulated to

compute the corresponding 3D skeleton. Gaussians are transformed

from the T-pose to the pose at frame C using this derived 3D skeleton.

If noise in the posed skeleton leads to misplacement of Gaussians,

skeleton optimization is employed to re�ne their positions. Finally,

the Gaussians are decoupled from the skeleton, allowing their pa-

rameters to be freely optimized to enhance visual quality.

Skeleton-driven Gaussians. Given the Gaussians G0 and skele-

tonS0 at T-Pose, and posed skeletonSC at frame C , one can transform

the Gaussian positions and quaternions from the T-pose to the pose

C by:

x8,C =

|S0 |
∑

9=1

F8, 9

[

q9,C · q
∗
9,0 · (x8,0 − x9,0) · q9,0 · q

∗
9,C + x9,C

]

q8,C =

|S0 |
∑

9=1

F8, 9 q9,C · q
∗
9,0 · q8,0

(1)

where x8,C , q8,C are the position and quaternion of 8th Gaussian at

frame C . x9,C , q9,C are the position and quaternion of 9 th joint at

frame C . It is worth noting that subscript 8 is the index of Gaussians,

and subscript 9 is that of joints.F8, 9 is the skinning weight of the

8th Gaussian w.r.t. the 9 th joint. We obtain the joint quaternions by

computing the rotation relative to a T-pose reference skeleton

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Skeleton optimization. Skeleton-driven Gaussians assume ac-

curate skeletons, but triangulated skeletons from OpenPose often

su�er from noise due to occlusions and resolution limits, leading to

suboptimal Gaussian initialization. To mitigate this, we introduce a

skeleton optimization algorithm (Algorithm 1), that re�nes the 3D

skeleton by rasterizing transformed Gaussians and minimizing 2D

photometric loss against the ground truth image.

In Algorithm 1, drive(·) is the skeleton-driven Gaussian transfor-

mation explained by Equation 1; rasterize(·) is the Gaussian raster-

izing function (implementation adopted from [Mallick et al. 2024]).

During the skeleton optimization, all the Gaussians are bound to

the skeleton, to ensure their movement aligns with joint motions.

Only the joint rotations are updated at each step, while Gaussian

opacity, scale, and spherical harmonics (SH) are held constant.

Algorithm 1 Skeleton Optimization

1: Input: A list of ground truth multi-view images {�8
∗} of the

player at frame C along with their corresponding camera poses

{cam8 }, T-pose Gaussians G0, T-pose skeleton S0, frame C skele-

ton SC
2: Output: Skeleton-optimized 3D Gaussians GC of the player

3: function OptimizeSkeleton({�8
∗}, {cam8 }, G0, S0, SC )

4: for iter = 1 to maxIters do

5: GC ← drive(G0,S0,SC )

6: 8 ← iter % numCams

7: �8 ← rasterize(GC , cam8 )

8: L ← Lphoto (�8 , �8
∗)

9: ∇SC ← ∇SCL

10: SC ← SC − [∇SC
11: end for

12: GC ← drive(G0,S0,SC )

13: return GC
14: end function

Appearance re�nement. Once skeleton optimization converges,

the Gaussians are detached from the skeleton, and their parameters

are optimized using the photometric loss Lphoto, to enhance local

structural details and adapt to changes in illumination.

To enhance speed and robustness, skeleton optimization opti-

mizes global joint rotations in the world coordinate system instead

of local rotations relative to parent joints, simplifying the com-

putational graph. During appearance re�nement, Gaussians, now

independent of the skeleton, move freely. To prevent them from

drifting into the background due to imperfect player masks, random

backgrounds are applied to both the ground truth and rasterizer,

penalizing Gaussians that move outside the player’s body.

Figure 3 demonstrates the qualitative gains by skeleton optimiza-

tion, and detailed ablation study of our skeleton optimization are

provided in the supplemental.

3.3 Static optimization

In most sports, the only signi�cant source of change in the scene

arises from the dynamic movements of human participants (players)

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

Ground truth No optimization With optimization

(a)

(b)

Fig. 3. �alitative gains by skeleton optimization

and the ball. The rest of the environment remains static, with varia-

tions limited to global lighting and shadow dynamics in�uenced by

these moving elements.

SH-only optimization. Following [Luiten et al. 2024], each

Gaussian provides a soft representation of physical space and can

be frozen once the geometry of the scene is accurately captured. We

train vanilla 3DGS for 30, 000 iterations on all the training views of

an empty court/room. During this step, we apply scale regularization

to prevent the formation of thin, elongated slivers. Additionally, to

enhance visual �delity around the basket—typically a region of high

viewer interest, we strategically increase Gaussian density within its

enclosing 3D bounding box. Subsequent optimization focuses exclu-

sively on appearance (SH parameters); 200 iterations for static back-

ground and 500 iterations for the dynamic foreground, per frame, to

account for lighting changes introduced by dynamic elements. This

reduces computational overhead by excluding non-appearance pa-

rameters from gradient calculations, minimizing atomic operations

during the backward pass, and signi�cantly decreasing training time.

Furthermore, decoupling geometry from appearance helps prevent

artifacts such as �ickering, which can occur when Gaussians shift,

resize, or rotate.

Precomputation. Our empirical analysis reveals that depth-

sorting of Gaussians is the primary bottleneck in rasterization. For

Gaussians associated with static regions, their geometrical parame-

ters (position, scale, rotation) are frozen, making their depth values

invariant and cacheable. To address this, we implement a precom-

puted method that stores the sorted Gaussians for each rasterizer

tile. These precomputed values are reused during the optimization

of appearance changes in subsequent frames. This precomputation

is performed after the optimization of the �rst frame has converged.

CUDA graphs. The precomputed structures reside in the VRAM

which eliminate the expensive synchronization procedures between

GPU and CPU. This gives way to implementing a purely CUDA

graph-based [Ansel et al. 2024] solution devoid of any CPU routines

or system calls. A CUDA graph is a software rendition that records

GPU operations into a Directed Acyclic Graph (DAG) that can be

used for asynchronous replays, minus the CPU overheads. Each

replay reuses prerecorded execution paths and memory addresses,

which removes any �nal unattended system-level constructs from

limiting the speed of LiveSplats.

Load Balancing. Due to the non-deterministic nature of 3DGS,

the number of Gaussians rendered per thread can vary signi�-

cantly. To balance the workload across threads, we introduce a

load-balancing step after precomputation. For tile 8 , the ordered set

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Fig. 4. Multi-modal data example from the BASKET-Multiview Dataset.

of Gaussians G8 = {61, 62, . . . , 6!} is partitioned by order into "

subtiles, each containing a maximum of # Gaussians (" = ⌈!/# ⌉).

We have G8 =
⋃"

9=1 B
8
9 , where B

8
9 is the set of Gaussians in subtile

9 with |B89 | ≤ # . Each B89 is processed by a separate thread block

to maximize GPU occupancy.

Since only SH coe�cients are optimized, transmittance values

can be precomputed during the �rst frame. This allows indepen-

dent blending within each subtile without requiring synchroniza-

tion between thread blocks. Consequently, subtile-distributed alpha

blending for pixel ? can be expressed as:

I(?) =

"
∑

9=1

) 8
9 (?) ·

∑

6: ∈B
8
9

:−1
∏

<=1

(1 − U< (?)) · U: (?) · C: (?) (2)

where) 8
9 (?) is the transmittance of subtile 9 at pixel ? ;U: (?),C: (?)

are the contributions of opacity and color of Gaussian : at pixel ? .

A representative �ow for the static optimization and an ablation

for each of the aforementioned optimizations is attached in the

supplementary.

3.4 Loss

We adopt the photometric loss function in 3DGS [Kerbl et al. 2023]:

Lphoto (� , �
∗) = (1 − _)L1 (� , �

∗) + _LD-SSIM (� , �
∗) + ' (3)

for skeleton optimization, where � and �∗ are the predicted and

ground truth images, _ = 0.2. For the static optimization and ap-

pearance re�nement in the dynamic optimization, only the subject-

masked area is used to compute loss to avoid problems from oc-

clusion among subjects: Lmasked = Lphoto ("�,"�∗), where " is

the subject mask. ' is used to regularize Gaussian movements and

scales, and is expressed as:

' = _G | |x − x
∗ | | + _B | |s − s

∗ | |, (4)

where x, x∗, s, s∗ are the optimized and initial Gaussian positions

and scales. This regularization limits the geometrical changes to a

Gaussian, thereby arresting any chances of �icker.

4 BASKET-Multiview Dataset

We introduce the BASKET (BAsketball Synthetic benchmarK for

Enhanced Telepresence)-Multiview Dataset, a synthetic collection

of scenarios representing common basketball plays generated using

Unreal Engine 5 [Epic Games 2025] and EasySynth [YDRIVE 2023],

leveraging the basketball court assets provided by [Studios 2025]

and player models from [Pictures 2024]. For each scene, we provide

comprehensive annotations that include calibrated cameras param-

eters, animations, RGB images, segmentation masks, depth maps,

surface normal images and animations, as illustrated in Figure 4.

All scenes are rendered at 1080p and 30 fps, with the exception of

sequence Attack 4, which has been rendered in 4K resolution.

The dataset is divided into two partitions: Core and Development.

The Core partition contains 7 scenes designed for evaluating re-

construction methods for sports events. Each Core scene is created

within a basketball court environment, consisting of an 89-camera

setup, optimized for capturing game-play during matches, as illus-

trated in Figure 5. More details on lighting and camera con�gura-

tions are provided in the supplementary.

The Development partition contains 9 simpler sequences con-

taining varying lighting conditions and backgrounds. Development

sequences are designed to isolate features such as lighting dynamics,

complex movements, close/far camera settings, and more, in order

to test the capabilities of the method during development. The full

list of scenes and their detailed speci�cations is provided in the

supplementary.
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Fig. 5. Lighting and camera configuration in the court. White light: point

light. Red light: spotlight. Some lights are not visible in this view due to

occlusion.

Table 1. Comparison on available multi-view sports datasets

Dataset Name Nature Cameras
Annotations

Semantic

Mask

Depth

Map

Normal

Map
Animation

TeamTrack Real 3 ✗ ✗ ✗ ✗

SoccerNet Real 1 ✗ ✗ ✗ ✗

SportsMOT Real 1 ✗ ✗ ✗ ✗

KTH Multiview

Football II
Real 3 ✗ ✗ ✗ ✗

FineSports Real 1 ✗ ✗ ✗ ✗

APIDIS Real 7 ✗ ✗ ✗ ✗

EPFL Basketball Real 4 ✗ ✗ ✗ ✗

SoccerNet-Depth Synthetic 1 ✗ ✓ ✗ ✗

Soccer on

your tabletop
Synthetic 1 ✗ ✓ ✗ ✗

BASKET-Multiview Synthetic 89 ✓ ✓ ✓ ✓

5 Experiments

This section describes the experiments we carry out for benchmark-

ing the performance of LiveSplats.We post the results of our ablation

studies on skeleton optimization and static optimization speed-up

techniques in the accompanying supplemental.

5.1 Datasets

We performed experiments on the BASKET-Multiview (described

in Section 4) and the CMU-Panoptic dataset [Joo et al. 2017]. For

the CMU-Panoptic dataset, we selected three subsequences from

171204_pose1 sequence and conduct experiments on these. The

BASKET-Multiview dataset provided in this paper includes enhance-

ments incorporating diversity in gender, skin tone, height and cloth-

ing styles. However, the experimental results reported in this section

were obtained using an earlier version of the dataset.

To evaluate the robustness of LiveSplats against imperfect pri-

ors, we generate skeletons, meshes, and skinning weights using

OpenPose [Cao et al. 2019] and SMPL [Loper et al. 2015], and fur-

ther introduce random perturbations to the skeletons (referred to

as noisy skl). We mimic di�erent noise levels in the skeletons by

randomly perturbing the limb joints (shoulders, elbows, hips, and

knees) by 10◦ to 20◦. These scenarios provide a controlled testbed to

validate the ability of our skeleton optimization method to correct

errors introduced by traditional o�-the-shelf models.

5.2 Baselines

We compared LiveSplats against all known state-of-the-art approaches

that perform online training and have publicly available implemen-

tations, to the best of our knowledge. We consider 3DGS-based

3DGStream [Sun et al. 2024](CVPR’24 Highlight), HiCoM [Gao

et al. 2024](Neurips’24), and NeRF-based StreamRF [Li et al. 2022]

(Neurips’22). Additionally, we included Dynamic-3DGS (D-3DGS)

[Luiten et al. 2024](3DV’24) as a baseline, prioritizing quality despite

its lack of real-time training capabilities. In our experiments, we

adhered to the recommended settings for each method wherever

possible, adjusting hyperparameters only when necessary to achieve

optimal results.

All experiments are conducted on an Nvidia RTX A4500 GPU,

with training and evaluation performed at a resolution of 960 × 540.

We optimize each scene component for 500 iterations, with the initial

60 iterations dedicated to skeleton optimization, if applicable. Since

the preprocessing requirements vary across methods, we follow

the protocol in [Luiten et al. 2024; Sun et al. 2024] to ensure a fair

comparison by reporting only the training time.

Our distributed design allows the workload to be scaled across

multiple, even moderately powerful, GPUs, enabling a �exible trade-

o� between performance and resources, making it practical and

portable across typical platforms.

5.3 Metrics

We evaluated the per-frame reconstruction quality using established

image-based metrics: PSNR, SSIM, and LPIPS. Additionally, we in-

troduced masked PSNR (M-PSNR), which calculates the PSNR exclu-

sively in dynamic regions to more accurately assess image quality

in motion-intensive areas. The image metrics were averaged across

all frames and views of each sequence.

For video evaluation, we adopted VMAF [Li et al. 2016], a widely

used metric that integrates spatial and temporal quality measures, to

account for multi-resolution quality and temporal coherence. We re-

ported the VMAF averaged across all views of each sequence. The av-

eraged training time (in seconds) per frame (SPF) was also reported

as a measure of computational cost. Since LiveSplats processed each

scene component independently in parallel, we reported the largest

SPF across all components. Furthermore, we introduced VMAF e�-

ciency (VE) and PSNR e�ciency (PE), de�ned as VE =
VMAF
SPF and

PE =
PSNR
SPF , respectively, to highlight the quality achieved per unit

time for each method.

5.4 Evaluations

Table 2 shows the evaluation results on BASKET-Multiview and the

CMU-Panoptic dataset. Figure 8 houses all qualitative results and

Figure 6 illustrates results on consecutive frames. From Table 2, we

can see that LiveSplats outperforms other methods in terms of speed

and quality on BASKET-Multiview. On CMU-Panoptic, LiveSplats

aces in both video and image quality as well as reconstruction speed.

This is particularly noteworthy given the imperfect segmentation

masks and noisy priors in the dataset—conditions under which

most methods degrade signi�cantly—highlighting robustness and

minimal reliance on perfect priors.
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Table 2. Full evaluation on BASKET-Multiview core scenes and CMU-Panoptic dataset. For CMU-Panoptic, the detected noisy 3D skeletons are used and the

skeleton optimization is applied. For BASKET-Multiview, skeleton optimization is not always applicable because the cameras are too far in some scenes, so the

perfect skeletons are used.

Dataset Method VMAF↑ PSNR↑ M-PSNR ↑ SSIM↑ LPIPS↓ SPF↓ VE↑ PE↑

StreamRF [Li et al. 2022] 36.30 ± 2.47 26.82 ± 0.42 13.45 ± 1.20 0.756 ± 0.040 0.198 ± 0.028 48.6 ± 0.5 0.75 ± 0.06 0.55 ± 0.01

3DGStream [Sun et al. 2024] 51.43 ± 6.05 28.36 ± 0.90 20.79 ± 1.52 0.875 ± 0.019 0.174 ± 0.024 12.6 ± 0.7 4.10 ± 0.43 2.26 ± 0.16

D-3DGS [Luiten et al. 2024] 65.41 ± 0.87 28.75 ± 0.85 23.20 ± 1.64 0.901 ± 0.003 0.149 ± 0.009 74.3 ± 3.5 0.88 ± 0.05 0.39 ± 0.01

HiCoM [Gao et al. 2024] 54.69 ± 10.61 28.08 ± 2.71 19.03 ± 1.26 0.888 ± 0.060 0.157 ± 0.077 6.1 ± 0.1 8.89 ± 1.65 4.57 ± 0.40

BASKET-Multiview

LiveSplats 67.30 ± 2.41 29.75 ± 0.21 25.24 ± 0.86 0.912 ± 0.007 0.119 ± 0.006 5.2 ± 0.1 13.02 ± 0.67 5.75 ± 0.12

StreamRF [Li et al. 2022] 34.49 ± 2.93 23.46 ± 0.34 18.20 ± 1.09 0.852 ± 0.057 0.404 ± 0.042 9.0 ± 0.0 3.83 ± 0.33 2.61 ± 0.04

3DGStream [Sun et al. 2024] 46.00 ± 6.03 25.68 ± 1.28 21.37 ± 1.79 0.902 ± 0.011 0.338 ± 0.008 5.0 ± 0.0 9.20 ± 1.21 5.13 ± 0.26

D-3DGS [Luiten et al. 2024] 50.66 ± 4.30 26.41 ± 0.24 24.60 ± 0.94 0.908 ± 0.008 0.286 ± 0.006 88.3 ± 3.5 0.57 ± 0.04 0.30 ± 0.01

HiCoM [Gao et al. 2024] 38.37 ± 4.10 25.35 ± 0.93 21.85 ± 1.83 0.904 ± 0.009 0.301 ± 0.009 4.0 ± 0.0 9.60 ± 1.03 6.34 ± 0.23

CMU-Panoptic

LiveSplats 57.33 ± 3.31 26.53 ± 1.27 26.55 ± 1.22 0.879 ± 0.009 0.274 ± 0.008 4.7 ± 0.0 12.20 ± 0.70 5.64 ± 0.27

Table 3. Evaluation with di�erent camera distances. A�ack 4 noisy skeletons are perturbed from perfect skeletons. Far views in Defense 2 result in no

meaningful priors and hence are skipped from the evaluation.

Sequence Dribbling Player - close view Attack 4 - mid view Defense 2 - far view

Method | Metric VMAF↑ PSNR↑ M-PSNR↑ SPF↓ VE↑ VMAF↑ PSNR↑ M-PSNR↑ SPF↓ VE↑ VMAF↑ PSNR↑ M-PSNR↑ SPF↓ VE↑

3DGStream [Sun et al. 2024] 36.08 30.54 19.73 3 12.03 57.01 26.75 23.63 14 4.07 56.57 29.19 19.81 12.3 4.60

D-3DGS [Luiten et al. 2024] 55.84 31.03 19.41 54 1.03 65.37 26.82 24.33 67 0.98 65.25 29.18 23.06 76.0 0.86

HiCoM [Gao et al. 2024] 33.24 28.64 18.24 3 11.08 31.47 22.03 18.65 6 5.25 55.08 28.59 17.81 6.1 9.03

LiveSplats (perfect skl) 76.16 35.85 25.74 3.8 20.04 72.68 30.17 25.60 5 14.54 66.31 29.75 26.15 5.2 12.75

LiveSplats (noisy skl) 62.13 35.72 25.60 5.8 10.71 72.67 30.17 25.60 5.7 12.75 - - - - -

In the BASKET-Multiview dataset, three camera views—close,

mid, and far—simulate court-side and spectator seat placements by

varying focal lengths and camera-to-player distances. From Table 3

and Figure 8 (a), (b), and (e), we observe that LiveSplats achieves the

best quality and convergence speed in mid views, excelling even

with noisy skeletons. In close views, it maintains high reconstruction

quality with minor speed trade-o�s. For far views, we signi�cantly

outperforms others in both quality and speed, though skeleton

detection and optimization become unreliable at extreme distances.

The variance in speed with varying camera distance is because

each player has a �xed number of Gaussians and closer views can

distribute the update process over more tiles, thereby speeding up

computation.

In real-world applications, lighting changes can come from di�er-

ence in illumination between the animated player and the T-pose

reference, or due to the dynamic, unpredictable movements of play-

ers. We evaluate our method’s ability to handle these lighting vari-

ations using the Running Player sequence with and without light

changes. Results are reported in Table 4 and illustrated in Figure 8

(e) (f). The results show that LiveSplats outperforms all baselines in

Table 4. Evaluation under sudden lighting changes (LC).

LC Method VMAF↑ PSNR↑ SSIM↑ LPIPS↓ SPF↓ VE↑

3DGStream [Sun et al. 2024] 32.61 29.89 0.973 0.037 2 16.31

D-3DGS [Luiten et al. 2024] 56.12 31.60 0.976 0.024 57 0.98

HiCoM [Gao et al. 2024] 31.03 27.22 0.965 0.038 3 10.34

LiveSplats (perfect skl) 82.52 39.43 0.990 0.008 3.8 21.72

✗

LiveSplats (noisy skl) 70.80 35.22 0.987 0.013 5.8 12.21

3DGStream [Sun et al. 2024] 25.81 30.33 0.971 0.041 2 12.91

D-3DGS [Luiten et al. 2024] 39.25 29.31 0.972 0.034 57 0.69

HiCoM [Gao et al. 2024] 16.31 27.44 0.963 0.044 3 5.44

LiveSplats (perfect skl) 77.59 38.95 0.990 0.012 3.8 20.42

✓

LiveSplats (noisy skl) 63.61 35.23 0.984 0.018 5.8 10.97

quality, even with noisy priors while maintaining comparable train-

ing speeds, which demonstrates the e�ectiveness of our skeleton

optimization.

In Section 3.3, we propose several quality-preserving, perfor-

mance optimizations for static regions under lighting changes, which

we test using three such scenes. As shown in Table 5, we achieve sig-

ni�cant reduction in SPF with comparable VMAF and PSNR against

other methods. Since di�erent methods require di�erent numbers

of iterations, in addition to the quality and performance metrics,

we report the milliseconds taken per iteration (ms/iter) to better

enunciate the speedup of our optimizations.

Table 5. �ality and speed evaluation of static scene optimization with

lighting changes only.

Scene Method VMAF↑ PSNR↑ SPF↓ VE↑ PE↑ ms/iter

3DGStream [Sun et al. 2024] 30.42 23.84 10 3.04 2.38 41

D-3DGS [Luiten et al. 2024] 62.19 27.16 29 2.14 0.94 29

HiCoM [Gao et al. 2024] 40.74 24.85 7 5.82 3.55 35
Day loop

LiveSplats 53.31 26.69 2 26.66 13.35 18

3DGStream [Sun et al. 2024] 32.71 21.14 11 2.97 1.92 47

D-3DGS [Luiten et al. 2024] 50.97 24.47 29 1.76 0.84 29

HiCoM [Gao et al. 2024] 42.28 22.89 7 6.04 3.27 35
Opera

LiveSplats 51.79 25.16 2 25.90 12.58 18

3DGStream [Sun et al. 2024] 11.61 27.91 9 1.29 3.10 36

D-3DGS [Luiten et al. 2024] 45.94 28.62 31 1.48 0.92 32

HiCoM [Gao et al. 2024] 35.49 28.61 6 5.92 4.77 28
Factory

LiveSplats 41.61 28.82 2 20.81 14.41 13

5.5 Limitations

LiveSplats achieves state-of-the-art performance in human-centered

scene reconstruction, demonstrating robust results on both the syn-

thetic BASKET-Multiview dataset which exempli�es popular sta-

dium sports like soccer, handball, or American football and the

real-world CMU-Panoptic dataset, which represents casual indoor
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Fig. 6. Video qualitative results

settings. Nevertheless, several limitations and opportunities for fu-

ture exploration remain.

First, despite robust performance demonstrated on the evaluated

datasets, the range of human motions captured is relatively lim-

ited, primarily re�ecting structured sports environments and casual

indoor scenarios. Future research should address more complex

interactions involving physical contact, such as wrestling or box-

ing, to rigorously assess and further enhance the robustness of our

approach.

Second, we rely on human-speci�c priors and skeletal constraints,

limiting validation thus far to human-centric datasets. Extending

the underlying concept of binding Gaussians to generalized object

skeletons represents a compelling and promising direction for future

investigations, potentially expanding applicability beyond human

motion capture.

Additionally, we currently assume a geometrically static environ-

ment, restricting its suitability in scenarios involving signi�cant

environmental dynamics, and investigating extensions to accommo-

date dynamic, evolving scenes is essential.

Finally, while the synthetic nature of the BASKET-Multiview

dataset enables highly accurate ground-truth annotations, it inher-

ently lacks some complexities encountered in real-world conditions.

Therefore, comprehensive validation on more diverse, real-world

datasets is imperative to fully establish the generalizability and

robustness of LiveSplats in practical scenarios.

6 Conclusion

Wepropose LiveSplats, a framework towards real-time, photo-realistic

3D reconstruction of sports events, using 3DGS and distributed opti-

mization. By computationally factorizing subjects and environment

reconstruction, and employing an hierarchical optimization strategy

with performance enhancements to the rasterization pipeline, we

achieve scalable, high �delity results that with the right computa-

tion could be run at interactive frame rates. Our BASKET-Multiview

dataset, establishes a benchmark for evaluating methods in com-

plex dynamic scenarios. Experiments demonstrate our approach

surpasses SOTA methods in quality, robustness, and e�ciency, set-

ting the stage for immersive, real-time live event streaming that

bridges physical and digital experiences.
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Ground truth D-3DGS 3DGStream HiCoM LiveSplats

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Fig. 7. �alitative Results. Rows (a)-(d) are from BASKET-Multiview Core scenes. Rows (e)-(g) are from BASKET-Multiview Development scenes. Rows (h) and

(i) are from CMU-Panoptic dataset. Row (j) is a static scene that we created to evaluate the static reconstruction quality.
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Ground truth D-3DGS 3DGStream HiCoM LiveSplats

(a)
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(h)

(d)

(e)

(g)

Fig. 8. Additional qualitative Results. Rows (a)-(d) are from BASKET-Multiview Core scenes. Rows (e)-(g) are from BASKET-Multiview Development scenes.
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A Ablations

To evaluate skeleton optimization with noisy priors, we mimic dif-

ferent noise levels in the skeletons by randomly perturbing the limb

joints (shoulders, elbows, hips, and knees) by maximum 10
◦ or 20◦,

and then compare the reconstruction quality with and without skele-

ton optimization. We choose two scenes: Running Player (with close

views) and Attack 4 (with mid views) to experiment on. To quantify

the skeleton quality, we report the skeleton error (SE), computed by

SE =
1

#

∑#
8=1 | |x8 − x

∗
8 | |, where x8 , x

∗
8 are the optimized and ground

truth joint positions respectively, and # is the number of joints in

the skeleton. From the results in Table 6 and Figure 3, we can see

that the skeleton optimization can e�ectively reduce the SE and

improve the video quality under various noise levels and camera

settings.

Table 6. Ablation study of skeleton optimization. Max ptb: max degrees of

random perturbation.

Scene
Max

ptb

Skl

opt
SE↓ VMAF↑ PSNR↑ M-PSNR↑ SSIM↑ LPIPS↓

Running

Player

(LC)

10°
✗ 2.356 58.83 33.06 22.17 0.981 0.023

✓ 0.593 73.77 37.43 26.61 0.987 0.014

20°
✗ 4.519 43.78 29.77 18.55 0.976 0.031

✓ 1.258 65.11 34.84 24.27 0.989 0.019

Attack 4

10°
✗ 2.588 71.33 29.88 24.15 0.924 0.107

✓ 1.334 72.59 30.17 26.22 0.927 0.106

20°
✗ 5.134 69.88 29.59 22.90 0.922 0.110

✓ 2.563 72.27 30.10 25.72 0.926 0.106

We evaluate the speed-up contributions of techniques in our

static optimization method: optimizing SH parameters (Only SH),

precomputing Gaussian sortings (Precomp), CUDA computation

graph (Graph), and load balancing (LB) through an ablation study

on the empty stadium scene with SH1 and SH3. Table 7 shows that

each technique provides substantial speed improvements for both.

Table 7. Ablation study of static optimization techniques.

SH Only Precomp Graph LB
ms / iter

SH1 SH3

24 34

✓ 20 30

✓ ✓ 13 25

✓ ✓ ✓ 9 21

✓ ✓ ✓ ✓ 6 18

B Per-scene evaluation results.

We report the quality and performance metrics per scene on CMU-

Panoptic dataset in Table 8 and BASKET-Multiview in Table 9.

Table 8. CMU-Panoptic dataset per-scene evaluation results.

Scene Method VMAF↑ PSNR↑ M-PSNR↑ SSIM↑ LPIPS↓ SPF↓ VE↑ PE↑

Scene 1

StreamRF 37.86 23.82 19.31 0.819 0.412 9.0 4.21 2.65

3DGStream 50.69 26.25 22.58 0.909 0.331 5.0 10.14 5.25

D-3DGS 53.84 26.69 25.51 0.914 0.281 88.0 0.61 0.30

HiCoM 42.58 26.08 23.42 0.909 0.297 4.0 10.65 6.52

Ours 53.80 25.58 25.89 0.876 0.274 4.7 11.45 5.44

Scene 2

StreamRF 33.10 23.39 17.14 0.819 0.359 9.0 3.68 2.60

3DGStream 39.19 24.21 19.31 0.889 0.347 5.0 7.84 4.84

D-3DGS 52.38 26.23 23.64 0.899 0.292 92.0 0.57 0.29

HiCoM 34.38 24.31 19.84 0.894 0.311 4.0 8.60 6.08

Ours 57.82 26.03 25.81 0.873 0.282 4.7 12.30 5.54

Scene 3

StreamRF 32.51 23.16 18.14 0.917 0.441 9.0 3.61 2.57

3DGStream 48.11 26.57 22.22 0.908 0.335 5.0 9.62 5.31

D-3DGS 45.77 26.32 24.64 0.912 0.284 85.0 0.54 0.31

HiCoM 38.15 25.67 22.28 0.909 0.295 4.0 9.54 6.42

Ours 60.36 27.97 27.96 0.889 0.267 4.7 12.84 5.95

Table 9. BASKET dataset per-scene evaluation results.

Scene Method VMAF↑ PSNR↑ M-PSNR↑ SSIM↑ LPIPS↓ SPF↓ VE↑ PE↑

Attack 1

StreamRF 33.79 26.49 12.15 0.816 0.192 49.0 0.69 0.54

3DGStream 50.44 28.42 20.67 0.874 0.173 12.5 4.04 2.27

D-3DGS 64.87 29.07 22.03 0.901 0.147 76.0 0.85 0.38

HiCoM 61.21 29.77 21.49 0.917 0.125 6.1 10.03 4.88

Ours 65.69 29.50 24.05 0.908 0.123 5.2 12.63 5.67

Attack 2

StreamRF 34.12 26.82 13.67 0.755 0.259 49.0 0.70 0.55

3DGStream 41.34 27.73 19.36 0.844 0.213 12.3 3.36 2.25

D-3DGS 66.03 29.08 21.48 0.901 0.146 78.0 0.85 0.37

HiCoM 62.18 29.48 18.06 0.914 0.127 6.3 9.87 4.68

Ours 66.44 29.65 24.22 0.910 0.121 5.2 12.78 5.70

Attack 3

StreamRF 40.95 27.14 11.86 0.721 0.193 48.0 0.85 0.57

3DGStream 55.97 29.21 21.59 0.896 0.148 12.5 4.48 2.34

D-3DGS 63.99 29.01 25.38 0.901 0.146 74.0 0.86 0.39

HiCoM 56.37 28.64 19.81 0.906 0.134 6.2 9.09 4.62

Ours 66.74 29.80 26.01 0.911 0.122 5.2 12.83 5.73

Attack 4

StreamRF 37.86 27.42 14.75 0.721 0.182 48.0 0.79 0.57

3DGStream 57.01 26.75 23.63 0.869 0.179 14.0 4.07 1.91

D-3DGS 65.37 26.82 24.33 0.894 0.169 67.0 0.98 0.40

HiCoM 31.47 22.03 18.65 0.751 0.331 6.0 5.25 3.67

Ours 72.68 30.17 25.60 0.927 0.105 5.0 14.54 6.03

Defense 1

StreamRF 35.81 26.41 13.84 0.787 0.189 49.0 0.73 0.54

3DGStream 53.19 28.98 21.06 0.884 0.159 12.2 4.36 2.38

D-3DGS 66.74 29.04 24.77 0.903 0.143 74.0 0.90 0.39

HiCoM 56.14 28.53 18.45 0.907 0.131 6.1 9.20 4.68

Ours 66.97 29.68 25.78 0.909 0.121 5.2 12.88 5.71

Defense 2

StreamRF 36.46 26.36 14.96 0.784 0.177 48.0 0.76 0.55

3DGStream 56.57 29.19 19.81 0.895 0.151 12.3 4.60 2.37

D-3DGS 65.25 29.18 23.06 0.903 0.145 76.0 0.86 0.38

HiCoM 55.08 28.59 17.81 0.905 0.131 6.1 9.03 4.69

Ours 66.31 29.75 26.15 0.910 0.121 5.2 12.75 5.72

Interval 1

StreamRF 35.14 27.11 12.89 0.711 0.195 49.0 0.72 0.55

3DGStream 45.46 28.22 19.38 0.862 0.195 12.1 3.76 2.33

D-3DGS 65.59 29.05 21.36 0.901 0.146 75.0 0.87 0.39

HiCoM 60.39 29.49 18.94 0.914 0.121 6.2 9.74 4.76

Ours 66.28 29.69 24.86 0.910 0.123 5.2 12.75 5.71

C BASKET-Multiview dataset

The full dataset speci�cations are shown in Table 10 and Table 11.

Our dataset does not simulate any crowd dynamics among the

audience.
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Table 10. Core BASKET-Multiview dataset composition

Sequence Name # Players #Cameras Shot #Frames Resolution

Attack 1 11 83 Far 321 1080p

Attack 2 6 83 Far 130 1080p

Attack 3 4 83 Far 319 1080p

Attack 4 5 83 Mid 321 4k

Defense 1 2 83 Far 160 1080p

Defense 2 3 83 Far 220 1080p

Interval 1 5 83 Far 185 1080p

C.1 Config sets

We use several illumination setups (denoted by Con�g set in 11)

to better simulate environments for diverse benchmarking of our

method.

(1) Set 1 (Figure 9): The map consists of a basketball court with

the following illumination setup.

Point lights: 46 point lights are strategically placed through

the scene to simulate localized lightning. These lights are

placed near the assets that give illumination to the scene as

�uorescent lights and the intensity of these point lights are

adjusted for realism.

Spot Lights: 21 Spot Lights, with two types of intensity (15

lux and 10 lux) are placed on the top of the court and stands.

The use of two types of illumination aims to enhance visibility

on the court while creating a realistic ambiance by reducing

light intensity in the stands, thereby directing spectators’

focus toward the court.

Sky Light: The Sky Light setup uses the SLS Speci�ed Cube-

map source type with a cubemap of Tx_HDRI_07a at an angle

of 175.0 and a distance threshold of 150, 000. The light inten-

sity is set to 5.0, with a white color (FFFFFFFF). It a�ects the

world and casts shadows, with indirect lighting intensity and

volumetric scattering intensity both set to 1.0.

Post Process Volume: These settings include an Auto Ex-

posure Histogram with an exposure compensation of −1.24,

a minimum brightness of 0.5, and a maximum brightness of

8.0. The color temperature is set to 6036.0.

For global illumination, the Lumen method is used with a

scene lighting quality of 5.0, scene detail of 4.0, and a scene

view distance of 100.0. Re�ections use a quality setting of 2.0,

hit lighting for re�ections, high-quality translucency re�ec-

tions enabled, and a maximum of 3 re�ection bounces.

(2) Set 2: This is simpler than Set 1 as it only consists of a Skylight.

Here the scenario is completely empty as we want to place

the player in a black environment with a sky light for global

illumination.

Sky Light: The Sky Light setup uses the SLS Speci�ed Cube-

map source type with a cubemap GrayLightTextureCube. The

light intensity is set to 3.0, with a white color (FFFFFFFF).

Post Process Volume: This sets up the lightning and re�ec-

tion methods to use Lumen.

(3) Set 3 (Figure 10): This is similar to Set 2 with an additional

point light moving around the player, to better understand

the e�ect of lighting changes on our method’s ability.

Fig. 9. Lighting layout in the basketball court.

Fig. 10. Lighting layout for the lighting change sequence.

Point light: It is placed at 170.0 units from the player and

rotates around it. It has an intensity of 10000.0 unitless, with

a white color (FFFFFFFF) and an attenuation radius of 1000.0.

Sky light: This setup is same as Set 2 but with an intensity

of 0.5.
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Table 11. Development BASKET-Multiview dataset composition

Sequence Name Animation name Background #Players Ball #Cameras Shot #Frames Con�g set

Running Player w/o ball

Running Player

Black 1 ✗ 40 Close 57 Set 2

Running Player w/o ball with light dynamics Black 1 ✗ 40 Close 57 Set 3

Running Player w/o ball Court 1 ✗ 83 Far 105 Set 1

Running Player w/o ball long path Court 1 ✗ 83 Far 600 Set 1

Running Player w/o ball with light dynamics Court 1 ✗ 83 Far 105 Set 4

Dribbling Player w/o ball

Dribbling Player

Black 1 ✗ 40 Close 48 Set 2

Dribbling Player with ball Black 1 ✓ 40 Close 48 Set 2

Dribbling Player w/o ball Court 1 ✗ 83 Far 160 Set 1

Day Cycle Court 0 ✗ 83 Far 76 Set 1

(4) Set 4: Themap is same as Set 1, a basketball court. The lighting

con�guration is the same as Set 1, with an additional spotlight

on the middle of the path that the player is following. Spot

light: It has an intensity of 2000.0 cd(candelas), it has a white

color (FFFFFFFF), an attenuation radius of 1140.0 and an outer

cone angle of 52.0, the rest of the values are set at 0.0.

C.2 Camera setup

We use two di�erent camera setups, one for all the scenes in the

stadium (Con�g Set 1 & 4) and another for scenes with a black

background (Con�g Set 2 & 3)

Fig. 11. 83-camera layout in the basketball court.

(1) 83-Camera Setup: The camera rig consists of 83 cameras

designed to capture all views of the stadium, as illustrated in

Figure 11. Using the stadium’s square shape, we place cameras

across multiple levels: the highest focuses on the play, while

the others capture the stadium’s structure.

All cameras have the same con�guration, with a sensor width

of 23.76 mm and a sensor height of 13.366 mm. They recreate

a 16:9 Digital �lm and capture with a lens of focal length of

12 mm, with a min FStop of 2.8 and a Max FStop of 22.0.

The rig for Attack 4 has a slight change in the orientation. We

place an empty actor on the basket and activate the look at

function on the camera settings. The camera con�gurations

are similar with a focal length of 22.00 mm for simulating a

zoomed-in view.

(2) 40-Camera Setup: This setup is designed to capture multiple

angles of the player, and consists of 40 cameras, as illustrated

in Figure 13. The cameras are arranged in a sphere and the

player is located at the center. To improve the view quality,

we activate the look at function with an o�set of 94.0 on

the Z axis. The camera con�gurations are similar to the 83

Camera setup, but with a sensor width of 24mm and a sensor

height of 13.5 mm. We use this camera layout to capture the

binding pose players (as illustrated in Figure 12) and black

background sequences.

Fig. 12. Sample binding pose player.

C.3 Render se�ings

(1) EasySynth [YDRIVE 2023]: This setup is con�gured to gen-

erate RGB (Color) images, depth maps, and normal maps.

The color images are output in PNG format, depth maps in

EXR format with a 16-bit precision, and normal maps in PNG

format. The resolution is set to 1920x1080 and depth range

con�gured to 100 meters.

(2) Movie Render Queue: Anti-aliasing is turned on with spatial

sample count set to 4 and temporal sample count set to 1.

Anti-aliasing is overridden and the anti-aliasing method is

set to None to ensure no additional smoothing artifacts are

introduced. The render warm-up count is set to 32, and the

engine warm-up count is set to 4. Both "Use Camera Cut for

Warm-Up" and "Render Warm-Up Frames" are disabled.

In the console variables section, Temporal AA upsampling

(r.TemporalAA.Upsampling) is set to 0.0 to disable any up-

scaling associated with temporal anti-aliasing. Motion blur

quality (r.MotionBlurQuality) is also set to 0.0 to remove

motion blur e�ects from the render. The screen percentage
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Fig. 13. 40-camera layout for capturing the binding pose pictures and black

background sequences.

(r.ScreenPercentage) is set to 70.0, likely to balance per-

formance and output quality. For the output settings, the

image size is set to 1920G1080.

Fig. 14. Layer rendering illustration.

C.4 Data generating workflow

We outline a brief sketch of the steps taken to design a sequence in

order.

(1) The character skeleton is exported fromUnreal Engine 5 (UE5)

to Maya. In Maya, a plugin is applied to generate control rigs,

which facilitate precise control over the animation process

and result in realistic, �uid movements.

(2) Using references from real sports plays, animations are care-

fully created to replicate the movements accurately. Once the

animations are completed, they are exported from Maya and

re-imported into UE5 as animated skeletons.

(3) The play sequences are created in UE5 by combining player

animations with elements like the ball. These sequences are

assembled and organized in the sequence editor.

(4) To generate detailed visual data, Easy Synth is con�gured.

It generates multiple types of images, such as Base Color

renders, Depth maps (up to 100 meters, exported in EXR

format for improved precision), and Normal maps capturing

surface geometry.

(5) Finally, semantic images are generated to enhance accuracy.

Each player, the ball, and the background are separated into

individual layers with transparency, as illustrated in Figure 14.

This layered approach results in more precise semantic im-

ages.
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