
Taming 3DGS: High-Quality Radiance Fields with Limited Resources

SASWAT SUBHAJYOTI MALLICK
∗
, Carnegie Mellon University, USA

RAHUL GOEL
∗
, Graz University of Technology, Austria and IIIT Hyderabad, India

BERNHARD KERBL, Carnegie Mellon University, USA

FRANCISCO VICENTE CARRASCO, Carnegie Mellon University, USA

MARKUS STEINBERGER, Graz University of Technology, Austria

FERNANDO DE LA TORRE, Carnegie Mellon University, USA

3DGS Ours

Size:1,450 MB
#Gaussians: 6 M

PSNR: 25.2 dB

47 mins

#Gaussians: 0.8 M

PSNR: 24.97 dB
Size:196 MB

8 mins

0 1 2 3 4 5 6
#Gaussians (M)

Training Garden

25.5

26.0

26.5

27.0

27.5

P
SN

R
(d

B
)

Ours
3DGS
Mini-Splaing
C3DGS
R-VQ
Papantonakis et al. (2024)

Fig. 1. Our method makes 3DGS optimization fast and flexible, achieving high rendering quality on a budget. Left: model size and training time are reduced

by more than 5×. Right: Our method produces models with an exact, user-specified target size, surpassing 3DGS quality as the target increases.

3D Gaussian Splatting (3DGS) has transformed novel-view synthesis with

its fast, interpretable, and high-fidelity rendering. However, its resource

requirements limit its usability. Especially on constrained devices, training

performance degrades quickly and often cannot complete due to excessive

memory consumption of the model. The method converges with an indef-

inite number of Gaussians—many of them redundant—making rendering

unnecessarily slow and preventing its usage in downstream tasks that ex-

pect fixed-size inputs. To address these issues, we tackle the challenges of

training and rendering 3DGS models on a budget. We use a guided, purely

constructive densification process that steers densification toward Gaussians

that raise the reconstruction quality. Model size continuously increases in

a controlled manner towards an exact budget, using score-based densifica-

tion of Gaussians with training-time priors that measure their contribution.

We further address training speed obstacles: following a careful analysis of

3DGS’ original pipeline, we derive faster, numerically equivalent solutions

for gradient computation and attribute updates, including an alternative par-

allelization for efficient backpropagation.We also propose quality-preserving

approximations where suitable to reduce training time even further.

Taken together, these enhancements yield a robust, scalable solution

with reduced training times, lower compute and memory requirements, and

∗
Both authors contributed equally to this research.

Authors’ Contact Information: Saswat Subhajyoti Mallick, smallick@andrew.cmu.edu,

Carnegie Mellon University, USA; Rahul Goel, goel@tugraz.at, Graz University of

Technology, Austria and IIIT Hyderabad, India; Bernhard Kerbl, bkerbl@andrew.cmu.

edu, Carnegie Mellon University, USA; Francisco Vicente Carrasco, fvicente@andrew.

cmu.edu, Carnegie Mellon University, USA; Markus Steinberger, steinberger@tugraz.at,

Graz University of Technology, Austria; Fernando de la Torre, ftorre@andrew.cmu.edu,

Carnegie Mellon University, USA.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan
© 2024 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in SIGGRAPH Asia
2024 Conference Papers (SA Conference Papers’24), December 3–6, 2024, Tokyo, Japan,
https://doi.org/10.1145/3680528.3687694.

high quality. Our evaluation shows that in a budgeted setting, we obtain

competitive quality metrics with 3DGS while achieving a 4–5× reduction

in both model size and training time. With more generous budgets, our

measured quality surpasses theirs. These advances open the door for novel-

view synthesis in constrained environments, e.g., mobile devices.

CCS Concepts: • Computing methodologies→ Rasterization; Recon-
struction; Parallel algorithms; Image-based rendering.

Additional Key Words and Phrases: Radiance Fields, Gaussian Splatting

ACM Reference Format:
Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente

Carrasco, Markus Steinberger, and Fernando de la Torre. 2024. Taming 3DGS:

High-Quality Radiance Fields with Limited Resources . In SIGGRAPH Asia
2024 Conference Papers (SA Conference Papers’24), December 3–6, 2024, Tokyo,
Japan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3680528.

3687694

1 INTRODUCTION

Novel View Synthesis (NVS) predicts unseen views from multi-

view datasets, enabling users to freely explore 3D content from

as little as a handful of easy-to-obtain photographs. State-of-the-

art NVS solutions can yield photo-realistic results that produce

high-quality user experiences for e-commerce, entertainment, and

immersive telecommunication. Recently, NVS methods have also

emerged as a powerful conditioning tool for high-quality 3D surface

reconstruction. The extensive research body on NVS covers vari-

ous methodologies, ranging from image- and mesh-based to purely

neural representations. Within this domain, 3D Gaussian Splatting

(3DGS) has been gaining popularity, since it combines high-quality

image synthesis, fast real-time rendering, and amenable training

times [Kerbl et al. 2023]. 3DGS leverages an explicit, point-based

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

https://doi.org/10.1145/3680528.3687694
https://doi.org/10.1145/3680528.3687694
https://doi.org/10.1145/3680528.3687694

2 • Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco, Markus Steinberger, and Fernando de la Torre

scene representation, a differentiable rendering pipeline, and GPU-

optimized rasterization to achieve photo-realistic image synthesis

at high frame rates. However, its optimization procedure is difficult

to control; this process—although it includes several heuristics—is

often wasteful and can lead to excessive memory overheads.

Starting from a sparse set of input points, many of the eventual

optimized primitives are redundant: Gaussians often make only

minor contributions in areas where fewer would suffice, while other

regions remain under-reconstructed and blurry. This inefficient dis-

tribution of Gaussian primitives impacts not only training time

but also the practical aspects of the representation. A typical 3DGS

model can yield several millions of Gaussians for a single unbounded

scene and require more than one gigabyte of disk space. Such sub-

stantial memory usage and geometry workload complicate real-time

rendering on low-end devices, preventing application in constrained

settings like network streaming or AR/VR on embedded systems.

In addition to being excessive, the memory consumption of 3DGS

is also hard to predict: even when starting from the same number of

input points, the difference between two reconstructed scenes w.r.t.

the number of Gaussians (and thus required storage) can be as much

as one order of magnitude. This hinders its usability for downstream

applications with fixed input size (e.g., classifier networks), prevent-

ing them from using an otherwise efficient, explicit representation.

Similarly, training time—although acceptable—fluctuates strongly

and overall fails to reflect the much higher rendering speed of 3DGS.

In order to tame 3DGS, we propose a strict moderation in the

Gaussian densification process to provide close control over its re-

source consumption (see Fig. 1). Given a user-defined model size,

we ensure a deterministic training schedule that can yield the exact

number of desired Gaussians. To achieve high quality with fewer

primitives (4–5× on average), we tackle the suboptimal distribu-

tion and high redundancy of the original method. We propose an

alternative densification algorithm, guided by a flexible, score-based

sampling of Gaussian primitives. Our suggested scoring scheme

for high quality at a budget combines loss-relevant components

that we collect per Gaussian, and across multiple sampled training

views. Densification occurs according to the pre-defined budget in

the vicinity of the top-scoring Gaussians. In contrast to previous

work, our densification uses a purely constructive schedule: we do
not require substantial pruning or culling of Gaussians during train-

ing. Therefore, we avoid unnecessary peaks in the optimization

that could violate the user’s hardware or budget constraints. We

acknowledge insightful concurrent work to ours on revising the

densification in 3D Gaussian Splatting [Bulò et al. 2024].

Redundancy in 3DGS is not limited to its eventual primitive dis-

tribution. With this work, we seek to address the issues that make

3DGS hard to control. These challenges–—unpredictable size and

training duration, inability to guide reconstruction detail–—require

varied solutions, which eventually synergize to achieve our goal of

easily controllable behavior. Therefore, we analyze the time cost

and quality tradeoff for individual steps in the training pipeline and

propose alternative, more efficient substitutes. This includes revisit-

ing the parallelization opportunities of backpropagation, which we

change from a per-pixel to a per-splat approach. Our contributions

to taming 3DGS can thus be summarized as follows:

(1) Apurely constructive, budget-constrained optimization for 3DGS,
enabling full control over model size and resources.

(2) A flexible framework for score-based densification, allowing
for use case-specific behavior and prioritization, e.g., by indi-

cating important regions of interest.

(3) Analysis and significant speedup of relevant training steps,
using both equivalent and approximate substitute methods.

2 RELATED WORK

An extensive body of previouswork focuses on novel-view synthesis:

we first provide a brief overview of the most common approaches

to this problem, before delving into solutions that focus specifically

on raising the efficiency and portability of 3D Gaussian Splatting.

Finally, we discuss point cloud downsampling approaches, from

which we draw inspiration in our score-based densification.

Novel-View Synthesis. Previous work has explored a wide range of
solutions for reconstructing or predicting the appearance of scenes,

ranging from small-scale models [Buehler et al. 2023; Chaurasia et al.

2013; Jain et al. 2023] to unbounded environments [Bódis-Szomorú

et al. 2016; Hedman et al. 2018; Riegler and Koltun 2021]. In con-

trast, Neural Radiance Fields (NeRFs) [Mildenhall et al. 2021] use

an implicit representation, which is trained using gradient descent

to recover a volumetric, continuous radiance field. While the ini-

tially proposed method was limited to single objects—taking over

a day to process them—several follow-up works raised the scope

and speed of NeRF scene reconstruction [Barron et al. 2021, 2022;

Chen et al. 2022; Zhang et al. 2020]. To address the high render-

ing times, voxel-based representations [Karnewar et al. 2022; Sun

et al. 2022] have been proposed to complement or replace selected

components of the NeRF architecture. Significant breakthroughs

for both training and rendering performance were marked by the

use of hash grids [Müller et al. 2022] and space warping [Wang

et al. 2023], at the cost of introducing quality caps. State-of-the-art

NeRF-based techniques [Barron et al. 2023; Duckworth et al. 2024;

Niemeyer et al. 2024; Wu et al. 2022; Zhang et al. 2022] are capable

of reconstructing unbounded scenes with high quality and render at

interactive frame rates, however, training them requires significant

time and compute effort.

The recently introduced 3D Gaussian Splatting (3DGS) uses an

initial point cloud—a common side product of calibration—and con-

verts it to optimizable 3D Gaussian primitives [Kerbl et al. 2023].

3DGS achieves high quality and extremely fast rendering; how-

ever, it suffers from exorbitant, unpredictable storage demands and

fluctuating training times, making it a poor choice for performing

novel-view synthesis at a budget.

3D Gaussian Splatting and Compression. Several recent works
have managed to considerably reduce the on-disk storage require-

ments of 3DGS. Compressing a model’s feature space is a widely

adopted technique [Lee et al. 2024; Navaneet et al. 2024]; the param-

eters of the Gaussians (geometry, color, opacity) can be clustered

and indexed using codebooks. This reduces the compute and storage

footprint per primitive, alleviating total memory consumption with-

out significant quality degradation. Niedermayr et al. [2024] follow
a similar recipe, but use thorough, sensitivity-aware clustering on

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

Taming 3DGS: High-Quality Radiance Fields with Limited Resources • 3

l1

edges
, ,

Weighted

Samplin
g

Set of Rendered
Views

Pixel Scores

Gaussians (G)

vN

Sv1

SvN

v1

Gaussian Scores (SG)

Budget

Sampled Gaussians Densification

Clone

Split

Gradient
Pixel Score

Gaussian
Properties

Sg = Σ F()

(a) Score-based Sampling for Densification

0 3 6 9 12 15
Training iterations (1000)

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 G
au

ss
ia

n
Pr

im
it

iv
e

C
ou

nt

3DGS
Our Schedule

(b) Predictable Growth

Fig. 2. Overview of our method. (a) We propose a systematic redesign of 3DGS densification. To select Gaussians to densify, we sample training views and

compute per-pixel saliency. A scoring function 𝐹 combines gradient, saliency, and primitive properties into a per-Gaussian score S𝑔 . (b) The addition of new

Gaussians follows a predictable schedule. We follow a growth curve that mimics 3DGS’ behavior and can be fitted to yield any desired model size after training.

Gaussian parameters, followed by a quantization-aware fine-tuning

and entropy encoding. Fan et al. [2023] weight Gaussians on their

volume and opacity to prune the less significant ones, followed by

distillation from synthetic (pseudo-)views and quantization of pa-

rameters. Papantonakis et al. [2024] cull Gaussian primitives based

on their spatial density and adaptively prune view-dependent color

coefficients on demand. While these methods are effective in reduc-

ing the storage requirements of 3DGS, they do little to make the

processmore controllable. Furthermore, although several approaches

consider the decimation of Gaussian primitives, they usually cause

modest reductions of ≈2×. Other aspects of previously proposed on-
disk compression techniques, such as code-booking or entropy min-

imization, are directly compatible with our method, which would

lead to even smaller file sizes due to our higher primitive reduction.

Our solution approaches compact 3DGS from a different direction:

while previous work identifies superfluous Gaussians for removal,

our scoring instead guides densification directly. Furthermore, it

is easy to compute from only image and per-Gaussian data, and

flexibly supports various use cases, which we demonstrate.

Point Cloud Downsampling. By interpreting Gaussian means as

singular points in space, we find that optimizing for high quality at

low primitive counts is closely related to point cloud downsampling.
Point clouds are 3D points distributed in space, often representing

surfaces or the density of measured objects. Especially when result-

ing from real-world scanning, the considerable size of point cloud

data can become a computation burden. This causes setbacks for

downstream applications running on compute-constrained hard-

ware settings. Previous work addresses this problem by quantizing

the space and approximating samples using nearest neighbors [Gold-

berger et al. 2004; Plötz and Roth 2018; Schütz et al. 2023], resampling

points based on their density and distribution. Learning-based meth-

ods introduce task-specific sampling [Dovrat et al. 2019] and yield

results competitive with heuristic methods, such as farthest point

sampling. Nezhadarya et al. [2020] uses a critical points layer, which
qualifies the most significant points to the next network layer.

Yang et al. [2019] implement Gumbel subset sampling to improve

the classification accuracy of a network trained on point cloud

data. Lang et al. [2020] introduce a differentiable projection during

nearest-neighbor search that "softens" the discrete points. Inspired

by these sampling-based methods to produce compact, salient mod-

els, we revise 3DGS densification as a sampling-guided procedure.

3 METHOD

Our approach is outlined in Fig. 2a. SfM point clouds are used as

an initialization to train a 3DGS-based model from calibrated multi-

view images with a pre-determined densification schedule. The

original 3DGS densification algorithm continuously adds primitives

(details) to regions with high positional gradients, splitting large

Gaussians, cloning smaller ones, and removing transparent ones.

We replace this module with a less frequently executed procedure

built upon steerable sampling. The maximum number of new Gaus-

sians added at every stage is pre-determined: although our method

mimics the original 3DGS growth curve, the peak (and final) num-

ber of Gaussians is fully controllable by the user who provides the

limits for model size (Fig. 2b). Crucially, this constructive approach

avoids temporary spikes in model size which are usually observed in

previous work [Fang and Wang 2024]. Intuitively, closely following

a constructive schedule avoids oscillation around a target budget

and thus unpredictable behavior, which is our key goal.

To maximize the quality per Gaussian, our densification is guided

using a score-based ranking and employs high-opacity Gaussians to
increase the primitives’ expressiveness. In addition, training dura-

tion is significantly reduced through several proposed modifications

that target the primary bottlenecks of the original pipeline, includ-

ing a faster, numerically equivalent solution for backpropagation.

Taken together, these measures yield an optimization with high

controllability, flexibility, and performance.

3.1 3D Gaussian Splatting Background

3DGS [Kerbl et al. 2023] is a point-based approach that models

scenes using a set of 3D Gaussians, parameterized by position (𝜇),

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

4 • Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco, Markus Steinberger, and Fernando de la Torre

covariance (Σ), and opacity 𝑜 . Ignoring inter-primitive overlap, the

theoretical contribution of a 3D Gaussian at a point 𝑥 is defined by:

𝐺 (𝑥) = 𝑜𝑒−
1

2
(𝑥−𝜇)𝑇 Σ−1 (𝑥−𝜇) , Σ = 𝑅𝑆𝑆𝑇𝑅𝑇 , (1)

where 𝑅 is a rotation and 𝑆 a scaling matrix. View-dependent ap-

pearance is modeled by Spherical Harmonics (SH) of order 3 and a

direct color component for base appearance. For a particular view-

point, the visible set of 3D Gaussians is rendered in a tile-based,

differentiable rasterizer to obtain a 2D image by 𝛼-blending their

projections (splats). 3DGS training minimizes a combined 𝐿1 and

SSIM loss w.r.t. the rendered and ground truth image by optimizing

the parameters—position, rotation, scaling, opacity, and SH—of each

Gaussian.

3.2 Predictable Model Growth

Throughout optimization, 3DGS continuously densifies its represen-
tation by adding Gaussian primitives to resolve under-reconstructed

regions. However, the number of added primitives at each stage is

decided based on a simple thresholding operation, with no control

over the progressive or final count. This evolutionary automaton—

although effective—leads to hard-to-predict, often exorbitant model

sizes and fluctuating training times.

To define a simpler, yet similarly effective and fully predictable

growth pattern, we investigate the densification behavior of 3DGS

across the outdoor scenes in the MipNeRF360 dataset. Fig. 2b plots

the development in the number of total Gaussians for each scene

as training progresses with the original method; note that curves

have been renormalized on the range between their initial and final

3DGS primitive count. We find that the number of Gaussians added

in each step follows a trend of quadratic decrease. We exploit this

pattern to determine a schedule of added primitives at each step,

using a parabolic curve that starts from the SfM initialization and

peaks precisely at the user-defined budget:

𝐴(𝑥) = 𝐵 − 𝑆 − 2𝑁
𝑁 2

𝑥2 + 2𝑥 + 𝐵, (2)

where 𝑁 is the number of densification steps, 𝐵 is the final count

(budget), and 𝑆 is the number of SfM points at initialization. As in

3DGS, we prune low-opacity Gaussians over time, thus following

an additive schedule directly may produce fewer primitives than

the given target. To avoid this, we instead compute the difference

between our current and accumulated target count and densify

the corresponding number of primitives. Sec. 5 demonstrates the

effectiveness of this scheme and the graceful quality degradation

resulting from lower budget limits.

3.3 Steerable Densification with Sampling

The original 3DGS approach suggests that high positional gradients

on a Gaussian indicate insufficient samples in its vicinity. Hence,

such Gaussians are regularly densified, either by cloning or splitting
(depending on their size). Bleeding-edge research reformulated the

3DGS optimization process as a sequence of Stochastic Langevin

Gradient Descent (SLGD) updates [Kheradmand et al. 2024]. At any

point, the optimized set of Gaussians can be interpreted as samples

from a likelihood distribution tied to 3DGS’ overall loss. Obtaining

a complete, high-fidelity reconstruction demands a solution that

delicately balances optimization and exploration. Letting image loss

also steer the densification procedure seems intuitive: a high loss

can indicate the need for denser sampling or additional exploration.

In the spirit of maintaining a steerable, yet interpretable densifi-

cation procedure, we propose a flexible solution that incorporates

salient indicators like image loss directly into the process. This is

enabled via two key features: a score-based, customizable sampling

of densification candidates and a significantly reduced densification

frequency. The former combines salient per-Gaussian and per-pixel

metrics, such as loss, to decide each primitive’s probability of densifi-

cation. The reduction in densification frequency is motivated by the

interplay of loss, sample placement, and optimization. A Gaussian

will cause high image loss for two reasons: either its neighborhood

is insufficiently sampled, or it has been erroneously placed. When

using loss for guidance, frequent densification can thus cause re-

peated duplication of misplaced Gaussians. However, when given

sufficient time and observations, 3DGS will eliminate out-of-place

Gaussians by lowering their opacity before densification occurs.

We invoke densification at a frequency of only one-fifth of 3DGS

(i.e., every 500 iterations). Given a set of 𝑁 camera views, 𝑉 =

{𝑣𝑖 }𝑁𝑖=1, the set of𝑀 fitted Gaussians,𝐺 = {𝑔 𝑗 }𝑀𝑗=1, and the set of 𝑁
rendered views, 𝑅 = {𝑟𝑖 }𝑁𝑖=1, we evaluate a scoring function 𝐹 that

is parameterized by per-Gaussian primitive attributes and projected

per-pixel metrics. This involves the following:

(1) Determine per-view saliency matrix S𝑣 : For each view 𝑣 ,

this matrix indicates pixels that may be undersampled (high

loss) or contain high-frequency information. Additionally,

this function enables prioritizing regions of interest:

S𝑣 = 1𝑅𝑂𝐼 ⊙ (𝜆1L1 (𝑣, 𝑟𝑣) + 𝜆2E(𝑣)), 𝑣 ∈ 𝑉 (3)

where L1 is the L1 loss, 𝐸 is a Laplacian filter, 1𝑅𝑂𝐼 is a

binary matrix (each element ∈ {0, 1}) indicating a masked

region of interest, ⊙ is the element-wise product, and 𝜆1, 𝜆2
are hyperparameters, set to 0.5 in our experiments.

(2) Compute Gaussian scores S𝐺 : We compute a global score

vector S𝐺 that holds a score 𝑆𝑔 for each Gaussian 𝑔 in 𝐺 . We

do this by evaluating 𝐹 (·) and summing over all 𝑁 views:

𝑆𝑔 =

𝑁∑︁
𝑖

𝐹 (∇𝑔, 𝑐𝑖𝑔,1𝑖𝑔,D𝑖
𝑔, S

𝑖
𝑣,B

𝑖
𝑔, 𝑧

𝑖
𝑔, 𝑜𝑔, 𝑠𝑔) (4)

S𝐺 = [𝑆𝑔1 , ..., 𝑆𝑔𝑀]𝑇 , 𝑔 𝑗 ∈ 𝐺 (5)

Here, ∇𝑔 is the Gaussian’s positional gradient. 𝑐𝑖𝑔 denotes

the number of pixels covered by 𝑔 in view 𝑖 . 1𝑖𝑔 is a binary

matrix that indicates these pixels. D𝑖
𝑔 is a matrix that holds

the distance of each pixel to the center of 𝑔. B𝑖𝑔 contains

each pixel’s blending weight for 𝑔. Attributes 𝑧𝑖𝑔 , 𝑜𝑔 , and 𝑠𝑔
constitute the depth in 𝑖 , opacity, and scale of 𝑔, respectively.

S𝐺 is representative of the need to resample each Gaussian to

converge to the final scene and serves as the foundation of our score-

based densification. Alg. 1 provides more details on this process. For

the choice of 𝐹 , we restrict each parameter’s range using median

scaling to remove outliers, followed by multiplication with 𝑖’s photo-

metric loss. The so-rescaled parameters are then accumulated into a

weighted sum, whose coefficients can be tuned for specific use cases.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

Taming 3DGS: High-Quality Radiance Fields with Limited Resources • 5

In the following, we explain the role of each parameter (and our

proposed weighting) to achieve high quality with few Gaussians.

∇𝑔 (50): We adopt the magnitude of the positional gradient as a

criterion from [Kerbl et al. 2023] et al. According to the authors,

high ∥∇𝑔 ∥2 can be interpreted as a 3D discontinuity detector. While

provably effective, it alone usually leads to wasteful behavior and

superfluous Gaussians.

𝑐𝑖𝑔 (0.1): The pixel count of𝑔 acts as an indicator for primitives that

tend to have large projections, which lead to a blurry appearance

in rendered images. Recent work uses similar indicators to guide

Gaussian growth [Zhang et al. 2024].

D𝑖
𝑔 (50): Splats that cover only a few pixels may still appear as

thin elongated "slivers" on screen. We encourage their densification

by scoring the sum of distances of covered pixels to the center of 𝑔.

S𝑖𝑣 (10): We weight the accumulated per-pixel saliency scores of

pixels covered by𝑔 (i.e., sum of element-wise products with1
𝑖
𝑔). This

enables the previously computed saliencey to guide densification.

B𝑖𝑔 (50): The sum of per-pixel blending weights used in rendering

indicates high-contributing Gaussians. Densifying them has the

highest chance of causing changes in scene appearance and quality.

𝑧𝑖𝑔 (5): The depth of each Gaussian allows us to distinguish be-

tween foreground and background. Note that this value is 0 for all

Gaussians outside the view frustum: thus, it serves as a combined

measurement of 𝑔’s visibility in the capture and its average distance

to the camera. This prioritizes densifying commonly seen primitives

without neglecting rarely seen background Gaussians.

𝑜𝑔 (100): We use a high weight on opacity to steer densification

away from low-opacity Gaussians. Low opacity is characteristic of

floaters, or Gaussians that the optimization is currently phasing out.

𝑠𝑔 (25): Overly large Gaussians—even if not observed up close

during training—hurt generalizability to unseen views. Scoring the

product of Gaussians’ scales yields more uniformly sized primitives.

Given the final score vector S𝐺 and a budgeted target number 𝐵 of

Gaussians to add, we perform densification by randomly resampling

𝐵 primitives from all Gaussians using S𝐺 as sampling weights. In

practice and for all experiments, we use 𝑁 = 10 uniformly sampled

training views for computing per-pixel saliency scores. Regarding

runtime complexity, our scoring adds an extra O(𝑁 × width ×
height) step for computing all 𝑁 S𝑣 , each of which is propagated

to the Gaussians with an auxiliary rendering pass to obtain S𝐺 .

3.4 High-Opacity Gaussians

While the basic Gaussian primitives of 3DGS can yield high quality,

their expressiveness is limited by their rigid Gaussian falloff [Hamdi

et al. 2024]. To remedy this, Kerbl et al. [Kerbl et al. 2024] used simple

clamped Gaussians with opacities >1 to approximate the appear-

ance of Gaussian clusters in a hierarchical level-of-detail structure.

We find that these high-opacity Gaussians can also boost the abil-

ity for modeling opaque surfaces with a low number of primitives.

Therefore, we convert the regular, capped Gaussian primitives to

high-opacity Gaussians after reaching the midpoint of our train-

ing (15K iterations). This involves replacing the opacity activation

with abs and clamping blending weights to 1 from above during

rendering. As shown by our ablation, this change positively impacts

quality metrics, particularly PSNR.

Algorithm 1 Proposed steerable densification method

1: T← Target Gaussian count at current iteration

2: G ← All Gaussians {𝑔1, 𝑔2, ..., 𝑔 |𝐺 | }
3: G𝑡 ← Gradient threshold

4: R𝑡 ← Radius threshold

5: for image 𝑖 ∈ sampled views(𝑁) do
6: 𝑃𝑖 ← Photometric loss

7: Initialise: 𝑐𝑖𝑔 = 0;D𝑖
𝑔 = 0; s𝑖𝑔 = 0;B𝑖𝑔 = 0

8: for pixel 𝑝 ∈ 𝑖 do
9: for 𝑔 ∈ Gaussians contributing to 𝑝 do
10: 𝑐𝑖𝑔 += 1

11: D𝑖
𝑔 += Distance from center of 𝑔 to 𝑝

12: s𝑖𝑔 += S𝑖𝑣 (𝑝)
13: B𝑖𝑔 += Blending weight of 𝑔 on 𝑝

14: end for
15: end for
16: 𝑆𝑔 = 𝑆𝑔 + 𝑃𝑖 · 𝐹 (∇𝑔, 𝑐𝑖𝑔,D𝑖

𝑔, s𝑖𝑔,B𝑖𝑔, 𝑧𝑖𝑔, 𝑜𝑔, 𝑠𝑔)
17: end for
18: S𝐺 = [𝑆𝑔1 , ..., 𝑆𝑔𝑀]𝑇 , 𝑔𝑖 ∈ G
19: 𝐵 = 𝑇 − |G| ▷ #Gaussians to add

20: Top gaussian indices: 𝐺 ′ ∼ (G, S𝐺 , 𝐵)
21: for 𝑔 ∈ 𝐺 ′ do
22: if (∇g > G𝑡) & (radiusg > R𝑡) then
23: SPLIT

24: else if (∇g > G𝑡) & (radiusg ≤ R𝑡) then
25: CLONE

26: end if
27: end for

4 3DGS RUNTIME ANALYSIS AND OPTIMIZATION

To better understand the performance challenges of 3DGS, we bench-

mark the original training pipeline, written in PyTorch, with ex-

plicit CUDA extensions for differentiable rasterization. We provide a

breakdown of the time taken by the high-level steps in each iteration

for multiple scenes, at different stages of training, in Fig. 3. We note

that, throughout the training routine, backpropagation of gradients

is the dominating bottleneck, closely followed by Adam optimizer

updates as the number of Gaussians increases. With these insights,

we propose targeted solutions for accelerating 3DGS training.

4.1 Backpropagation with Per-Splat Parallelization

In the original 3DGS backward pass, gradients are propagated from

the pixels onto the Gaussians. The total gradient calculation in-

volves computing many per-pixel, per-splat values, which are then

accumulated globally via reduction. Kerbl et al. [2023] take the

natural approach of mapping threads to pixels and iterating over

the depth-sorted splats back-to-front. Within a tile, each thread

considers splats in reverse blending order, evaluates a per-pixel gra-

dient portion, and atomically adds it to the corresponding splat’s

accumulated gradient. While correct, this leads to multiple threads

contending for access to the same locations and thus serialized

atomic operations, as shown in Fig. 4. The fact that each Gaussian

splat maintains a multitude of gradients for its attributes further
aggravates the overhead of this reduction [Durvasula et al. 2023].

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

6 • Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco, Markus Steinberger, and Fernando de la Torre

1000 10000 15000 1000 10000 15000 1000 10000 15000

Iterations

0

20

40

60

80

100

T
im

e
(m

s)

ga
rd

en
bi

cy
cl

e
ki

tc
he

n
bo

ns
ai

3DGS 3DGS + our optimizations Ours
forward

backward

step

forward

backward

step

Fig. 3. Time spent in different parts (forward pass, backward pass, optimizer

step) of one 3DGS iteration in four scenes (garden, bicycle, kitchen, bonsai).

Left: analysis of original 3DGS at different stages of training. Center: original

3DGS densification with our proposed performance optimizations. Right:

using our compact densification and performance optimizations.

We propose a solution where each tile uses a parallelization

scheme over the 2D splats instead of pixels. This new approach

lets threads maintain a per-splat state and continually exchange

per-pixel states consisting of transmittance𝑇 and accumulated color

𝑅𝐺𝐵 (as opposed to storing per-pixel information and exchanging

the larger per-splat data). Ignoring corner cases, let us assume a

simplified setting where #threads = #pixels = #splats = N. At each

point in time, thread 𝑖 computes a gradient portion for splat 𝑖; to

do this, it requires the state of each pixel 𝑗 after blending the front-

most 𝑖 primitives. During the forward pass, each thread stores one

per-pixel state every N splats in the autodiff context for backward,

resulting in available starting states (0, 𝑗), (𝑁, 𝑗), ...∀𝑗 . From these,

each thread in a tile generates pixel state (𝑖, 𝑗) at the beginning

of the backward pass. Threads then exchange pixel states via fast

collaborative sharing. In each step, thread 𝑖 + 1 applies the default
alpha blending logic to go from its received (𝑖, 𝑗) to (𝑖 + 1, 𝑗) and
incorporates this information into the gradient. For more details

please refer to Fig. 4 and accompanying video.

We also observe that iterating the tail of each tile’s depth-sorted

list of splats often becomes redundant due to occlusion. This is

avoided in the forward pass, which terminates upon saturation.

To exploit this in backpropagation as well, we keep track of the

last contributor across the tile and use it to skip entire groups of

splat ⇐⇒ tile pairings. Finally, we reduce the overall rasteriza-

tion workload via tighter culling as proposed by Radl et al. [2024],

minimizing redundant splats in the forward and backward pass.

Fig. 5 compares the time taken for the backward methods of 3DGS,

concurrent work DISTWAR [Durvasula et al. 2023] and Ours, with

the original 3DGS and our compact optimization schedule.

4.2 Accelerated SH and Differentiable Loss Computation

Fig. 3 reveals the significant time spent on Adam updates as the

number of Gaussians increases. Of these updates, SHs—48 out of

59 optimized per-Gaussian attributes—are responsible for the vast

majority. To amend this, we switch all bands beyond the first to

a batched update schedule, performing only one step of Adam

optimization every 16 iterations.

3DGS Backward: Pixel-Parallelization Our Backward: Splat-Parallelization

Pi
xe

ls

Splats

warp 1 warp 2 warp 3

Warp Shuffle
Pending state
Current state
Evaluated

Fig. 4. Gradient backpropagation. (Top) 3DGS utilizes per-pixel paralleliza-

tion for backpropagation. Atomic gradient additions create frequent colli-

sions, slowing down the backward. Instead, we parallelize on the projected

2D splats, such that each thread (and pixel) contributes to one Gaussian at

a time. (Bottom) The gradient calculation requires processing a set of per-

pixel, per-splat values resulting in an implicit traversal of a splat ⇐⇒ pixel

state table. During the forward pass, we store the pixel states for every 32
nd

splat in the per-tile sorted lists. For the backward, we divide the splats into

buckets of size 32, each of which gets scheduled to a CUDA warp. Warps

use intra-warp shuffling to produce their share of the state table cheaply.

5000 10000 15000 20000 25000 30000
Iterations

5

10

15

20

T
im

e
(m

s)

Time taken for back-propagation on Bicycle
3DGS
w/ DISTWAR
w/ Our Backward
Ours

Fig. 5. Backward pass duration in training of Bicycle using 3DGS, DIST-

WAR [Durvasula et al. 2023] and our variants. For our approach, we plot the

times when we used 3DGS densification and our proposed budget schedule.

The original 3DGS implementation combines the 0th SH band (i.e.,

base color) and higher bands into a single tensor before rasterization.

This consumes a surprising portion of the forward pass. We avoid

this by extending the differential rasterizer to load Gaussian SH

coefficients from separate tensors.

3DGS loss computation involves evaluating the SSIM metric. It

is configured to use 11×11 Gaussian kernel convolution: we pro-

pose using optimized CUDA kernels to perform differentiable 2D

convolution via two consecutive 1D convolutions, since Gaussian

kernels are separable in nature. In addition, we use a fused kernel

for the evaluation of the SSIM metric from the convolved results.

This speeds up the loss calculation and is particularly impactful

when the number of optimized Gaussians is low compared to image

resolution, which is the case when training on a budget.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

Taming 3DGS: High-Quality Radiance Fields with Limited Resources • 7

5 EVALUATION AND DISCUSSION

This section evaluates our proposed approach both quantitatively

and qualitatively. Our implementation is based on top of the original

3DGS codebase [Kerbl et al. 2023]. Most original hyperparameters

are retained; however, we added a separate Adam optimizer for

batched SH updates, increasing the SH learning rate four times

(0.001) and reducing the opacity learning rate by half (0.025). The

evaluation was conducted using an NVIDIA RTX A4500 GPU. Re-

sults for other techniques, including training times, were obtained

on the same hardware or adjusted to ensure comparability.

5.1 Datasets and Metrics

We run benchmarks on three established datasets—Tanks&Temples

[Knapitsch et al. 2017], Deep Blending [Hedman et al. 2018], and

MipNeRF360 [Barron et al. 2022], which contain 2, 2, and 9 scenes,

respectively. These datasets cover bounded indoor and unbounded

outdoor scenarios with detailed backgrounds. We use the same

train/test split as the original 3DGS publication and follow-up work.

In addition to common quality metrics (peak signal-to-noise ra-

tio (PSNR), structural similarity (SSIM), and perceptual similarity

(LPIPS) [Zhang et al. 2018], an important focus of our work is re-

source efficiency: Our method aims to achieve high quality with low

resource usage. We assess these qualities by timing the optimization

(Train time), counting the final number of Gaussians (#G), as well

as recording the peak number (Peak #G) during training.

5.2 Results

We evaluate our method in two separate, budgeted scenarios. Results

for the first scenario are shown at the top of Table 1, and those for

the second scenario at the bottom. For qualitative results, see Fig. 6.

In the first, we select a reasonable budget for individual scenes,

based on their spatial extent and SfM point count. For the small-scale

indoor scenes in MipNeRF-360, we set the budget to 2× the SfM

points. For the larger, full-room indoor captures of Deep Blending,

we use 5×, and for unbounded outdoor scenes, we use 15×. For the
outdoor Tanks&Temples, the initial SfM point count is significantly

higher, thus we set the budget to 2× here as well. Note that this

parameterization could be automatized by providing scenes in real-

world coordinates or a corresponding multiplier. To evaluate the

resources/quality tradeoff, we comparewith recent works that aim at

reducing the memory footprint of 3DGS: (Compressed 3DGS) [Nie-

dermayr et al. 2024], Compact-3DGS (R-VQ) [Lee et al. 2024], and

[Papantonakis et al. 2024]. Due to its exceptionally fast training, we

also compare with the high-quality version of Instant-NGP (INGP-

Big) [Müller et al. 2022]. To perform a thorough evaluation and

provide comprehensive context, we also evaluate the concurrent

work forMini-Splatting [Fang andWang 2024]. Assessing the results

in the top half of Table 1, we find that among splatting-based meth-

ods, Ours achieves outstanding reduction (slightly outperformed

only byMini-Splatting in one dataset). Notably, our compact method

is competitive with (and sometimes surpasses) 3DGS in terms of

quality, especially PSNR. However, the most striking benefit of our

approach is efficiency: Mini-Splatting—similar to 3DGS—relies on

heavily oversampling the scene before pruning, creating a vast gap

of up to 10× between their peak and final model size. In contrast,

our method uses a purely constructive optimization that only adds

Gaussians towards an exact target budget. In addition, we achieve

this using between half and one-third of the time of the next-fastest

3DGS-based methods and occasionally outperform even Instant-

NGP in terms of speed. The reduction of primitives naturally leads

to an accelerated rendering performance. Average achieved frames

per second are significantly higher using Ours (compared with

3DGS): Tanks&Temples 246 FPS (vs. 127), MipNeRF-360 142 FPS

(86), and Deep Blending 258 FPS (92).

In the second budgeted scenario, we configure our optimization

to reach the exact same model size as the original 3DGS. Since the

expressiveness of our method rises with the available budget, in this

scenario, we compare our results with representative, high-quality

approaches from different domains: Plenoxels [Fridovich-Keil et al.

2022], and two sophisticated NeRF methods, MipNeRF360 [Barron

et al. 2022] and ZipNeRF [Barron et al. 2023]. Finally, we consider

the original 3DGS technique [Kerbl et al. 2023]. We provide the cor-

responding results in the bottom half of Table 1. Although our opti-

mization differs significantly from 3DGS, we demonstrate that our

budgeting mechanism allows Ours (Big) to match their model size

exactly. The achieved quality easily surpasses 3DGS and MipNeRF-

360, second only to the recent, much slower Zip-NeRF approach.

5.3 Ablations

Table 2 examines the effect of individually removing several of

our contributions. This analysis is performed in the first budgeted

scenario. Note that all configurations yield the same number of Gaus-

sians. However, omitting the consideration of image loss (or our

score-based sampling altogether) from densification significantly

harms quality. We observe a similar impact when omitting the use

of high-opacity Gaussians. Reverting to the original SH update fre-

quency can lead to minuscule quality improvements, but causes a

performance drop of up to 25%. Early results have shown that an

even better speed/quality tradeoff may be achieved with an alter-

native "sparse" Adam optimizer that only applies gradient updates

to attributes with non-zero gradients. Replacing our per-splat back-

ward pass with the original has an even higher performance cost,

indicating the effectiveness of our optimizations. Table 3 assesses

the impact of alternative growth curves, showing the relative op-

timality of choosing the quadratic curve. To quantify the impact

and importance of the factors included in our score function, we

include an ablation of their average effect on scene quality. Starting

from our full scoring function, removing individual components,

in order of severity, incurs PSNR penalties: blending weights (-1.31

dB), Laplacian filter (-1.29 dB), pixel coverage (-1.28 dB), pixel dis-

tance (-1.26 dB), depth (-1.26 dB), scale (-1.26 dB), positional gradient

(-1.25 dB), opacity (-1.25 dB), saliency (-1.24 dB), and L1 (-0.22 dB).

As an additional case study, Fig. 1 ablates the quantitative effect

on Garden when varying the available budget. We see a consis-

tent improvement as budget increases, showing a clear correlation

between provided budget and achieved image quality. While our

approach does not target the peculiarities of PyTorch, we note that

our first budgeted scenario allows training with consistently less

than 10GB VRAM—compact enough for a mid-range NVIDIA RTX

3080. Table 4 lists both required training time and quality as the

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

8 • Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco, Markus Steinberger, and Fernando de la Torre

Table 1. Quantitative comparison of other methods with our technique in two budgeted scenarios (top half: compact models, bottom half: match 3DGS size).

For quality, we compare PSNR, SSIM, and LPIPS metrics. For resource efficiency, we report training time, and, where applicable, the final number (#G), and

peak number (Peak #G) of Gaussians used. Best and Second Best results are highlighted for each dataset and category.

Tanks&Temples MipNeRF-360 Deep Blending

SSIM PSNR LPIPS

Train

time

#G

(10
6
)

Peak

#G

SSIM PSNR LPIPS

Train

time

#G

(10
6
)

Peak

#G

SSIM PSNR LPIPS

Train

time

#G

(10
6
)

Peak

#G

INGP-Big 0.745 21.92 0.305 7m - - 0.699 25.59 0.331 8m - - 0.817 24.96 0.390 8m - -

C3DGS 0.843 23.57 0.182 28m 1.53 1.84 0.811 27.34 0.221 43m 2.44 2.94 0.900 29.54 0.252 39m 2.43 2.81

RVQ 0.831 23.30 0.202 27m 0.83 1.46 0.797 26.99 0.245 48m 1.41 2.57 0.901 29.75 0.260 38m 1.04 2.25

[Papantonakis et al. 2024] 0.844 23.66 0.178 18m 0.71 0.71 0.814 27.43 0.220 25m 0.83 0.83 0.902 29.57 0.247 22m 0.97 0.97

Mini-Splatting 0.847 23.42 0.181 20m 0.31 4.32 0.822 27.26 0.217 30m 0.49 4.32 0.909 30.04 0.244 24m 0.56 4.51

Ours 0.835 23.89 0.207 5m 0.29 0.29 0.799 27.29 0.253 8m 0.63 0.63 0.902 29.89 0.263 5m 0.27 0.27

Plenoxels 0.719 21.08 0.379 25m - - 0.626 23.08 0.463 26m - - 0.795 23.06 0.51 28m - -

MipNeRF360 0.759 22.22 0.257 48 h - - 0.792 27.69 0.237 48 h - - 0.901 29.4 0.245 48 h - -

Zip-NeRF - - - - - - 0.828 28.54 0.189 1.5 h - - - - - - - -

3DGS 0.847 23.65 0.176 22m 1.84 1.84 0.815 27.46 0.215 33m 3.31 3.31 0.904 29.64 0.243 34m 2.81 2.81

Ours (Big) 0.851 24.04 0.170 10m 1.84 1.84 0.822 27.79 0.205 16m 3.31 3.31 0.907 30.14 0.235 13m 2.81 2.81

Table 2. Ablations of our method’s components on all datasets in the first budgeted scenario.

Tanks&Temples MipNeRF-360 Deep Blending

SSIM PSNR LPIPS Time SSIM PSNR LPIPS Time SSIM PSNR LPIPS Time

Ours 0.835 23.89 0.207 5m 0.799 27.29 0.253 8m 0.902 29.89 0.263 5m

No Score-Based Sampling 0.829 23.61 0.222 4m 0.762 26.69 0.292 8m 0.899 29.78 0.276 4m

No Image Loss 0.828 23.47 0.224 5m 0.774 26.65 0.274 8m 0.884 29.14 0.281 5m

No High-Opacity Gaussians 0.813 23.65 0.221 5m 0.779 26.84 0.277 8m 0.876 28.92 0.286 5m

No Reduction in SH Updates 0.837 23.94 0.201 6m 0.803 27.37 0.249 10m 0.905 29.91 0.258 6m

No Per-Splat Backward 0.835 23.89 0.207 9m 0.799 27.29 0.253 18m 0.902 29.89 0.263 11m

Table 3. Achieved metrics with different training schedule curves.

Tanks&Temples MipNeRF-360 Deep Blending

SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS

Quadratic 0.835 23.89 0.207 0.799 27.29 0.253 0.902 29.89 0.263

Linear 0.832 23.77 0.214 0.794 27.21 0.261 0.898 29.65 0.275

Exponential 0.831 23.75 0.216 0.788 27.09 0.270 0.897 29.63 0.277

Table 4. Measurement of quality (PSNR) development with the number of

Gaussians (M) and training time taken (in minutes) for garden.

Budget (M) 0.7 1.4 2.1 2.8 3.5 4.2 4.9

PSNR (dB) 26.74 27.24 27.39 27.44 27.53 27.59 27.64

Time (m) 6 9 11 13 15 18 20

number of Gaussians (budget) is modified. We observe a linear rela-

tion of budget and training time, but a flattening curve in quality as

the expressiveness of the model saturates.

To evaluate the impact and robustness of terms in the scoring

function, we tested for a variance-based sensitivity (Sobol method).

We found that within 10% variance of the sensitivity parameters,

our first and total order sensitivities are within the range 0.01–0.05,

which proves that the method is robust across minor hyperparame-

ter variances. When parameters were changed by 20%, first-order

Sobol indices measured up to 0.16, showing the limit of robustness.

Finally, we show the flexibility of our cost function on two use

cases: one prioritizing regions of interest (Fig. 7), the other produc-

ing superior results in single-object foreground reconstruction, by

encouraging densification of low-depth Gaussians (Fig. 8).

6 CONCLUSION

We have presented an efficient and controllable splatting-based

optimization technique for generating high-quality radiance fields.

Our approach restrains the unpredictable behavior of the recent

3DGS technique, allowing for exact primitive budgeting, flexible

sample guiding, and highly improved resource efficiency, avoiding

excessive peaks in training.

These properties generate new opportunities for optimizing novel-

view synthesis in various environments, e.g., hardware-constrained

and edge devices. Other applications include latency-constrained

streaming services, where on-the-fly, interactive 3D reconstructions

could be steered towards prioritizing salient regions of interest, such

as faces. Another, exciting avenue that our sample guiding could

facilitate is 3DGS optimization using pre-trained generative models,

e.g., by steering optimization based on score distillation [Chen et al.

2024]. Our contributions are complementary to ongoing 3DGS com-

pression efforts, many of which could be applied to our reduced-size

models to even greater effect.

While our approach is an important step towards low-cost, high-

quality radiance fields, achieving optimal quality still requires a

substantial sample count. Strongly budgeted settings can lead to

noticeable blurriness, especially for background objects (see accom-

panying video). We leave more elaborate predictions and resolution

of blind spots in scene exploration to future work. Our code is

available at https://github.com/humansensinglab/taming-3dgs.

ACKNOWLEDGMENTS

We thank Srinath R. and Junkai Huang for helpful discussions.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

https://github.com/humansensinglab/taming-3dgs

Taming 3DGS: High-Quality Radiance Fields with Limited Resources • 9

Ground Truth 3DGS INGP-Big Ours Ours (Big)

Fig. 6. Qualitative comparison of results produced with our method in two budgeted scenarios to 3DGS, as well as Instant-NGP, whose training times match

those of Ours. While the strictly budgeted scenario produces highly competitive results, a higher budget resolves occasional remaining blurry Gaussians.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

10 • Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Francisco Vicente Carrasco, Markus Steinberger, and Fernando de la Torre

time: 1min
PSNR: 27.4

Gaussians: 4k

time: 2min
PSNR: 29.8

Gaussians: 4k

time: 5min
PSNR: 33.7

Gaussians: 15k

time: 5min
PSNR: 33.7

Gaussians: 15k

time: 2min
PSNR: 29.8

Gaussians: 4k

time: 1min
PSNR: 27.4

Gaussians: 4k

time: 2min
PSNR: 33.5

Gaussians: 4k

time: 1min
PSNR: 29.2

Gaussians: 2k

Ours

3DGS

time: 1min
PSNR: 27.4

Gaussians: 4k

time: 2min
PSNR: 29.8

Gaussians: 4k

time: 5min
PSNR: 33.7

Gaussians: 15k

time: 5min
PSNR: 33.7

Gaussians: 15k

time: 2min
PSNR: 29.8

Gaussians: 4k

time: 1min
PSNR: 27.4

Gaussians: 4k

time: 2min
PSNR: 33.5

Gaussians: 4k

time: 1min
PSNR: 29.2

Gaussians: 2k

Ours

3DGS

Fig. 7. Demonstrating prioritization for guiding densification to regions of interest. We assign higher scores to face masks detected with SegmentAnything

[Kirillov et al. 2023] in the computation of 𝑆𝑣 . The above figure displays the quality of the facial region as measured via PSNR. We achieve competitive metrics

faster and with fewer Gaussians than 3DGS. This demonstrates use cases of our approach for latency-constrained live settings. In a telepresence scenario, we

could prioritize the quality of the most frequently observed image regions and leave others under-sampled without impacting the user experience.

3DGS Ours

3DGS Ours

Gaussian Location Density

Renderings
0

Max

3DGS Ours

3DGS Ours

Gaussian Location Density

Renderings
0

Max

3DGS Ours

3DGS Ours

Gaussian Location Density

Renderings
0

Max

Fig. 8. Prioritizing foreground object reconstruction: we modify the proposed cost function by using a high, negative weight for the depth component (-15).

When using a budget comparable to 3DGS, more samples are distributed to areas showing the foreground object (top). The higher density of Gaussians allows

for more accurate modeling of intricate view-varying effects, such as changes in illumination (bottom).

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

Taming 3DGS: High-Quality Radiance Fields with Limited Resources • 11

REFERENCES

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-

Brualla, and Pratul P Srinivasan. 2021. Mip-nerf: A multiscale representation for

anti-aliasing neural radiance fields. In ICCV’21. 5855–5864.
Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).

Jonathan T. Barron, BenMildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman.

2023. Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields. ICCV (2023).

András Bódis-Szomorú, Hayko Riemenschneider, and Luc Van Gool. 2016. Efficient

volumetric fusion of airborne and street-side data for urban reconstruction. In 2016
23rd International Conference on Pattern Recognition (ICPR). IEEE, 3204–3209.

Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen.

2023. Unstructured lumigraph rendering. In Seminal Graphics Papers: Pushing the
Boundaries, Volume 2. 497–504.

Samuel Rota Bulò, Lorenzo Porzi, and Peter Kontschieder. 2024. Revising Densification

in Gaussian Splatting. arXiv:2404.06109 [cs.CV] https://arxiv.org/abs/2404.06109

Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis.

2013. Depth synthesis and local warps for plausible image-based navigation. ACM
Transactions on Graphics (TOG) 32, 3 (2013), 1–12.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:

Tensorial Radiance Fields. ECCV (2022).

Zilong Chen, Feng Wang, Yikai Wang, and Huaping Liu. 2024. Text-to-3D using

Gaussian Splatting. arXiv:2309.16585 [cs.CV] https://arxiv.org/abs/2309.16585

Oren Dovrat, Itai Lang, and Shai Avidan. 2019. Learning to sample. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2760–2769.

Daniel Duckworth, Peter Hedman, Christian Reiser, Peter Zhizhin, Jean-François Thib-

ert, Mario Lučić, Richard Szeliski, and Jonathan T. Barron. 2024. SMERF: Streamable

Memory Efficient Radiance Fields for Real-Time Large-Scene Exploration. ACM
Trans. Graph. 43, 4, Article 63 (jul 2024), 13 pages. https://doi.org/10.1145/3658193

Sankeerth Durvasula, Adrian Zhao, Fan Chen, Ruofan Liang, Pawan Kumar Sanjaya,

and Nandita Vijaykumar. 2023. DISTWAR: Fast Differentiable Rendering on Raster-

based Rendering Pipelines. arXiv:2401.05345 [cs.CV]

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang.

2023. LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction

and 200+ FPS. arXiv preprint arXiv:2311.17245 (2023).
Guangchi Fang and Bing Wang. 2024. Mini-Splatting: Representing Scenes with a

Constrained Number of Gaussians. In Proceedings of the European Conference on
Computer Vision (ECCV). arXiv:2403.14166 [cs.CV]

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and

Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields Without Neural Networks. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 5501–5510.

Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov. 2004.

Neighbourhood components analysis. Advances in neural information processing
systems 17 (2004).

Abdullah Hamdi, Luke Melas-Kyriazi, Jinjie Mai, Guocheng Qian, Ruoshi Liu, Carl

Vondrick, Bernard Ghanem, andAndrea Vedaldi. 2024. GES: Generalized Exponential

Splatting for Efficient Radiance Field Rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and

Gabriel Brostow. 2018. Deep Blending for Free-viewpoint Image-based Rendering.

ACM Transactions on Graphics (Proc. SIGGRAPH Asia) 37, 6 (2018), 257:1–257:15.
Nishant Jain, Suryansh Kumar, and Luc Van Gool. 2023. Enhanced Stable View Synthesis.

In CVPR’23.
Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy Mitra. 2022. Relu fields:

The little non-linearity that could. In SIGGRAPH 2022. 1–9.
Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 2023.

3D Gaussian Splatting for Real-Time Radiance Field Rendering. ACM Transactions
on Graphics 42, 4 (2023).

Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas, Michael Wimmer, Alexandre

Lanvin, and George Drettakis. 2024. A Hierarchical 3D Gaussian Representation for

Real-Time Rendering of Very Large Datasets. ACM Transactions on Graphics 43, 4
(July 2024). https://repo-sam.inria.fr/fungraph/hierarchical-3d-gaussians/

Shakiba Kheradmand, Daniel Rebain, Gopal Sharma, Weiwei Sun, Jeff Tseng, Hossam

Isack, Abhishek Kar, Andrea Tagliasacchi, and Kwang Moo Yi. 2024. 3D Gaussian

Splatting as Markov Chain Monte Carlo. arXiv:2404.09591 [cs.CV]

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura

Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr

Dollár, and Ross Girshick. 2023. Segment Anything. arXiv:2304.02643 [cs.CV]

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks and

Temples: Benchmarking Large-Scale Scene Reconstruction. ACM Transactions on
Graphics 36, 4 (2017).

Itai Lang, Asaf Manor, and Shai Avidan. 2020. Samplenet: Differentiable point cloud

sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 7578–7588.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. 2024.

Compact 3D Gaussian Representation for Radiance Field. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 21719–
21728.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ra-

mamoorthi, and Ren Ng. 2021. Nerf: Representing scenes as neural radiance fields

for view synthesis. Commun. ACM 65, 1 (2021), 99–106.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant

neural graphics primitives with a multiresolution hash encoding. ACM Transactions
on Graphics (ToG) 41, 4 (2022), 1–15.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed

Pirsiavash. 2024. Compact3D: Compressing Gaussian Splat Radiance Field Models

with Vector Quantization. In ECCV.
Ehsan Nezhadarya, Ehsan Taghavi, Ryan Razani, Bingbing Liu, and Jun Luo. 2020.

Adaptive hierarchical down-sampling for point cloud classification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12956–12964.

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. 2024. Compressed

3D Gaussian Splatting for Accelerated Novel View Synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10349–
10358.

Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle, Daniel

Duckworth, Rama Gosula, Keisuke Tateno, John Bates, Dominik Kaeser, and Federico

Tombari. 2024. RadSplat: Radiance Field-Informed Gaussian Splatting for Robust

Real-Time Rendering with 900+ FPS. arXiv.org (2024).

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and

George Drettakis. 2024. Reducing the Memory Footprint of 3D Gaussian Splatting.

Proceedings of the ACM on Computer Graphics and Interactive Techniques 7, 1 (May

2024). https://repo-sam.inria.fr/fungraph/reduced_3dgs/

Tobias Plötz and Stefan Roth. 2018. Neural nearest neighbors networks. Advances in
Neural information processing systems 31 (2018).

Lukas Radl, Michael Steiner, Mathias Parger, Alexander Weinrauch, Bernhard Kerbl,

and Markus Steinberger. 2024. StopThePop: Sorted Gaussian Splatting for View-

Consistent Real-time Rendering. ACM Transactions on Graphics 4, 43, Article 64
(2024).

Gernot Riegler and Vladlen Koltun. 2021. Stable View Synthesis. In CVPR’21.
Markus Schütz, Bernhard Kerbl, Philip Klaus, and Michael Wimmer. 2023. GPU-

Accelerated LOD Generation for Point Clouds. Computer Graphics Forum 42, 8

(2023). https://doi.org/10.1111/cgf.14877

Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct Voxel Grid Optimization:

Super-Fast Convergence for Radiance Fields Reconstruction. In CVPR’22.
Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu, Taku Komura, Christian

Theobalt, and Wenping Wang. 2023. F2-NeRF: Fast Neural Radiance Field Training

with Free Camera Trajectories. CVPR’23 (2023).
Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing Huang, James Tompkin, and

Weiwei Xu. 2022. Scalable Neural Indoor Scene Rendering. ACM Transactions on
Graphics (2022).

Jiancheng Yang, Qiang Zhang, Bingbing Ni, Linguo Li, Jinxian Liu, Mengdie Zhou,

and Qi Tian. 2019. Modeling point clouds with self-attention and gumbel subset

sampling. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 3323–3332.

Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. NeRF++: Analyzing

and Improving Neural Radiance Fields. arXiv:2010.07492 (2020).
Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.
Xiaoshuai Zhang, Sai Bi, Kalyan Sunkavalli, Hao Su, and Zexiang Xu. 2022. NeRFusion:

Fusing Radiance Fields for Large-Scale Scene Reconstruction. CVPR’22 (2022).
Zheng Zhang, Wenbo Hu, Yixing Lao, Tong He, and Hengshuang Zhao. 2024. Pixel-GS:

Density Control with Pixel-aware Gradient for 3D Gaussian Splatting. In ECCV.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

https://arxiv.org/abs/2404.06109
https://arxiv.org/abs/2404.06109
https://arxiv.org/abs/2309.16585
https://arxiv.org/abs/2309.16585
https://doi.org/10.1145/3658193
https://arxiv.org/abs/2401.05345
https://arxiv.org/abs/2403.14166
https://repo-sam.inria.fr/fungraph/hierarchical-3d-gaussians/
https://arxiv.org/abs/2404.09591
https://arxiv.org/abs/2304.02643
https://repo-sam.inria.fr/fungraph/reduced_3dgs/
https://doi.org/10.1111/cgf.14877

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 3D Gaussian Splatting Background
	3.2 Predictable Model Growth
	3.3 Steerable Densification with Sampling
	3.4 High-Opacity Gaussians

	4 3DGS Runtime Analysis and Optimization
	4.1 Backpropagation with Per-Splat Parallelization
	4.2 Accelerated SH and Differentiable Loss Computation

	5 Evaluation and Discussion
	5.1 Datasets and Metrics
	5.2 Results
	5.3 Ablations

	6 Conclusion
	Acknowledgments
	References

